13,998 research outputs found

    Speech Sensorimotor Learning through a Virtual Vocal Tract

    Get PDF
    Studies of speech sensorimotor learning often manipulate auditory feedback by modifying isolated acoustic parameters such as formant frequency or fundamental frequency using near real-time resynthesis of a participant\u27s speech. An alternative approach is to engage a participant in a total remapping of the sensorimotor working space using a virtual vocal tract. To support this approach for studying speech sensorimotor learning we have developed a system to control an articulatory synthesizer using electromagnetic articulography data. Articulator movement data from the NDI Wave System are streamed to a Maeda articulatory synthesizer. The resulting synthesized speech provides auditory feedback to the participant. This approach allows the experimenter to generate novel articulatory-acoustic mappings. Moreover, the acoustic output of the synthesizer can be perturbed using acoustic resynthesis methods. Since no robust speech-acoustic signal is required from the participant, this system will allow for the study of sensorimotor learning in any individuals, even those with severe speech disorders. In the current work we present preliminary results that demonstrate that typically-functioning participants can use a virtual vocal tract to produce diphthongs within a novel articulatory-acoustic workspace. Once sufficient baseline performance is established, perturbations to auditory feedback (formant shifting) can elicit compensatory and adaptive articulatory responses

    Consonant Context Effects on Vowel Sensorimotor Adaptation

    Get PDF
    Speech sensorimotor adaptation is the short-term learning of modified articulator movements evoked through sensory-feedback perturbations. A common experimental method manipulates acoustic parameters, such as formant frequencies, using real time resynthesis of the participant\u27s speech to perturb auditory feedback. While some studies have examined phrases comprised of vowels, diphthongs, and semivowels, the bulk of research on auditory feedback-driven sensorimotor adaptation has focused on vowels in neutral contexts (/hVd/). The current study investigates coarticulatory influences of adjacent consonants on sensorimotor adaptation. The purpose is to evaluate differences in the adaptation effects for vowels in consonant environments that vary by place and manner of articulation. In particular, we addressed the hypothesis that contexts with greater intra-articulator coarticulation and more static articulatory postures (alveolars and fricatives) offer greater resistance to vowel adaptation than contexts with primarily inter-articulator coarticulation and more dynamic articulatory patterns (bilabials and stops). Participants completed formant perturbation-driven vowel adaptation experiments for varying CVCs. Results from discrete formant measures at the vowel midpoint were generally consistent with the hypothesis. Analyses of more complete formant trajectories suggest that adaptation can also (or alternatively) influence formant onsets, offsets, and transitions, resulting in complex formant pattern changes that may reflect modifications to consonant articulatio

    Reflectance Transformation Imaging (RTI) System for Ancient Documentary Artefacts

    No full text
    This tutorial summarises our uses of reflectance transformation imaging in archaeological contexts. It introduces the UK AHRC funded project reflectance Transformation Imaging for Anciant Documentary Artefacts and demonstrates imaging methodologies

    Stochastic Resonance Can Drive Adaptive Physiological Processes

    Get PDF
    Stochastic resonance (SR) is a concept from the physics and engineering communities that has applicability to both systems physiology and other living systems. In this paper, it will be argued that stochastic resonance plays a role in driving behavior in neuromechanical systems. The theory of stochastic resonance will be discussed, followed by a series of expected outcomes, and two tests of stochastic resonance in an experimental setting. These tests are exploratory in nature, and provide a means to parameterize systems that couple biological and mechanical components. Finally, the potential role of stochastic resonance in adaptive physiological systems will be discussed

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task
    • …
    corecore