317,848 research outputs found
Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI
It has often been proposed that regions of the human parietal and/or frontal lobe may modulate activity in visual cortex, for example, during selective attention or saccade preparation. However, direct evidence for such causal claims is largely missing in human studies, and it remains unclear to what degree the putative roles of parietal and frontal regions in modulating visual cortex may differ. Here we used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) concurrently, to show that stimulating right human intraparietal sulcus (IPS, at a site previously implicated in attention) elicits a pattern of activity changes in visual cortex that strongly depends on current visual context. Increased intensity of IPS TMS affected the blood oxygen level–dependent (BOLD) signal in V5/MT+ only when moving stimuli were present to drive this visual region, whereas TMS-elicited BOLD signal changes were observed in areas V1–V4 only during the absence of visual input. These influences of IPS TMS upon remote visual cortex differed significantly from corresponding effects of frontal (eye field) TMS, in terms of how they related to current visual input and their spatial topography for retinotopic areas V1–V4. Our results show directly that parietal and frontal regions can indeed have distinct patterns of causal influence upon functional activity in human visual cortex. Key words: attention, frontal cortex, functional magnetic resonance imaging, parietal cortex, top--down, transcranial magnetic stimulatio
Morphometric analyses of the visual pathways in macular degeneration
Introduction. Macular degeneration (MD) causes central visual field loss.
When field defects occur in both eyes and overlap, parts of the visual pathways
are no longer stimulated. Previous reports have shown that this affects the
grey matter of the primary visual cortex, but possible effects on the preceding
visual pathway structures have not been fully established. Method. In this
multicentre study, we used high-resolution anatomical magnetic resonance
imaging and voxel-based morphometry to investigate the visual pathway
structures up to the primary visual cortex of patients with age-related macular
degeneration (AMD) and juvenile macular degeneration (JMD). Results. Compared
to age-matched healthy controls, in patients with JMD we found volumetric
reductions in the optic nerves, the chiasm, the lateral geniculate bodies, the
optic radiations and the visual cortex. In patients with AMD we found
volumetric reductions in the lateral geniculate bodies, the optic radiations
and the visual cortex. An unexpected finding was that AMD, but not JMD, was
associated with a reduction in frontal white matter volume. Conclusion. MD is
associated with degeneration of structures along the visual pathways. A
reduction in frontal white matter volume only present in the AMD patients may
constitute a neural correlate of previously reported association between AMD
and mild cognitive impairment.
Keywords: macular degeneration - visual pathway - visual field - voxel-based
morphometryComment: appears in Cortex (2013
Reciprocal anatomical relationship between primary sensory and prefrontal cortices in the human brain
The human brain exhibits remarkable interindividual variability in cortical architecture. Despite extensive evidence for the behavioral consequences of such anatomical variability in individual cortical regions, it is unclear whether and how different cortical regions covary in morphology. Using a novel approach that combined noninvasive cortical functional mapping with whole-brain voxel-based morphometric analyses, we investigated the anatomical relationship between the functionally mapped visual cortices and other cortical structures in healthy humans. We found a striking anticorrelation between the gray matter volume of primary visual cortex and that of anterior prefrontal cortex, independent from individual differences in overall brain volume. Notably, this negative correlation formed along anatomically separate pathways, as the dorsal and ventral parts of primary visual cortex showed focal anticorrelation with the dorsolateral and ventromedial parts of anterior prefrontal cortex, respectively. Moreover, a similar inverse correlation was found between primary auditory cortex and anterior prefrontal cortex, but no anatomical relationship was observed between other visual cortices and anterior prefrontal cortex. Together, these findings indicate that an anatomical trade-off exists between primary sensory cortices and anterior prefrontal cortex as a possible general principle of human cortical organization. This new discovery challenges the traditional view that the sizes of different brain areas simply scale with overall brain size and suggests the existence of shared genetic or developmental factors that contributes to the formation of anatomically and functionally distant cortical regions
Cathodal Occipital tDCS is unable to modulate The Sound Induced Flash Illusion in migraine
Migraine is a highly disabling disease characterized by recurrent pain.Despite an intensive effort, mechanisms of migraine pathophysiology, still represent an unsolved issue. Evidences from both animals and humans studies suggest that migraine is characterized by hyperresponsivity or hyperexcitability of sensory cortices, especially the visual cortex. This phenomenon, in turn, may affect multisensory processing. Indeed, migraineurs present with an abnormal, reduced, perception of the Sound-induced Flash Illusion (SiFI), a crossmodal illusion that relies on optimal integration of visual and auditory stimuli by the occipital visual cortex. Decreasing visual cortical excitability with transcranial direct current stimulation (tDCS) can increase the SiFI in healthy subjects. Moving from these issues , we applied cathodal tDCS over the visual cortex of migraineurs, with and without aura, in order to decrease cortical excitability and thus physiologically restoring the perception of a reliable SiFI. Differently from our expectations tDCS was unable to reliably modulate SiFI in migraine. The chronic, relatively excessive, visual cortex hyperexcitability, , featuring the migraineur brain, may render tDCS ineffective for restoring multisensory processing in this disease
Drawing the Representation
This article argues that the Representation is drawn by the perceiver: that it does not arrive at the visual cortex fully-formed. Rather, colour arrives at the visual cortex and the Representation is drawn from that
Organization of the dorsal lateral geniculate nucleus in the mouse
AbstractThe dorsal lateral geniculate nucleus (dLGN) of the thalamus is the principal conduit for visual information from retina to visual cortex. Viewed initially as a simple relay, recent studies in the mouse reveal far greater complexity in the way input from the retina is combined, transmitted, and processed in dLGN. Here we consider the structural and functional organization of the mouse retinogeniculate pathway by examining the patterns of retinal projections to dLGN and how they converge onto thalamocortical neurons to shape the flow of visual information to visual cortex.</jats:p
Visual feedback alters force control and functional activity in the visuomotor network after stroke.
Modulating visual feedback may be a viable option to improve motor function after stroke, but the neurophysiological basis for this improvement is not clear. Visual gain can be manipulated by increasing or decreasing the spatial amplitude of an error signal. Here, we combined a unilateral visually guided grip force task with functional MRI to understand how changes in the gain of visual feedback alter brain activity in the chronic phase after stroke. Analyses focused on brain activation when force was produced by the most impaired hand of the stroke group as compared to the non-dominant hand of the control group. Our experiment produced three novel results. First, gain-related improvements in force control were associated with an increase in activity in many regions within the visuomotor network in both the stroke and control groups. These regions include the extrastriate visual cortex, inferior parietal lobule, ventral premotor cortex, cerebellum, and supplementary motor area. Second, the stroke group showed gain-related increases in activity in additional regions of lobules VI and VIIb of the ipsilateral cerebellum. Third, relative to the control group, the stroke group showed increased activity in the ipsilateral primary motor cortex, and activity in this region did not vary as a function of visual feedback gain. The visuomotor network, cerebellum, and ipsilateral primary motor cortex have each been targeted in rehabilitation interventions after stroke. Our observations provide new insight into the role these regions play in processing visual gain during a precisely controlled visuomotor task in the chronic phase after stroke
CA1-projecting subiculum neurons facilitate object-place learning.
Recent anatomical evidence suggests a functionally significant back-projection pathway from the subiculum to the CA1. Here we show that the afferent circuitry of CA1-projecting subicular neurons is biased by inputs from CA1 inhibitory neurons and the visual cortex, but lacks input from the entorhinal cortex. Efferents of the CA1-projecting subiculum neurons also target the perirhinal cortex, an area strongly implicated in object-place learning. We identify a critical role for CA1-projecting subicular neurons in object-location learning and memory, and show that this projection modulates place-specific activity of CA1 neurons and their responses to displaced objects. Together, these experiments reveal a novel pathway by which cortical inputs, particularly those from the visual cortex, reach the hippocampal output region CA1. Our findings also implicate this circuitry in the formation of complex spatial representations and learning of object-place associations
Attentional load and sensory competition in human vision: Modulation of fMRI responses by load fixation during task-irrelevant stimulation in the peripheral visual field.
Perceptual suppression of distractors may depend on both endogenous and exogenous factors, such as attentional load of the current task and sensory competition among simultaneous stimuli, respectively. We used functional magnetic resonance imaging (fMRI) to compare these two types of attentional effects and examine how they may interact in the human brain. We varied the attentional load of a visual monitoring task performed on a rapid stream at central fixation without altering the central stimuli themselves, while measuring the impact on fMRI responses to task-irrelevant peripheral checkerboards presented either unilaterally or bilaterally. Activations in visual cortex for irrelevant peripheral stimulation decreased with increasing attentional load at fixation. This relative decrease was present even in V1, but became larger for successive visual areas through to V4. Decreases in activation for contralateral peripheral checkerboards due to higher central load were more pronounced within retinotopic cortex corresponding to 'inner' peripheral locations relatively near the central targets than for more eccentric 'outer' locations, demonstrating a predominant suppression of nearby surround rather than strict 'tunnel vision' during higher task load at central fixation. Contralateral activations for peripheral stimulation in one hemifield were reduced by competition with concurrent stimulation in the other hemifield only in inferior parietal cortex, not in retinotopic areas of occipital visual cortex. In addition, central attentional load interacted with competition due to bilateral versus unilateral peripheral stimuli specifically in posterior parietal and fusiform regions. These results reveal that task-dependent attentional load, and interhemifield stimulus-competition, can produce distinct influences on the neural responses to peripheral visual stimuli within the human visual system. These distinct mechanisms in selective visual processing may be integrated within posterior parietal areas, rather than earlier occipital cortex
- …
