31,475 research outputs found

    Photo-realistic face synthesis and reenactment with deep generative models

    Get PDF
    The advent of Deep Learning has led to numerous breakthroughs in the field of Computer Vision. Over the last decade, a significant amount of research has been undertaken towards designing neural networks for visual data analysis. At the same time, rapid advancements have been made towards the direction of deep generative modeling, especially after the introduction of Generative Adversarial Networks (GANs), which have shown particularly promising results when it comes to synthesising visual data. Since then, considerable attention has been devoted to the problem of photo-realistic human face animation due to its wide range of applications, including image and video editing, virtual assistance, social media, teleconferencing, and augmented reality. The objective of this thesis is to make progress towards generating photo-realistic videos of human faces. To that end, we propose novel generative algorithms that provide explicit control over the facial expression and head pose of synthesised subjects. Despite the major advances in face reenactment and motion transfer, current methods struggle to generate video portraits that are indistinguishable from real data. In this work, we aim to overcome the limitations of existing approaches, by combining concepts from deep generative networks and video-to-video translation with 3D face modelling, and more specifically by capitalising on prior knowledge of faces that is enclosed within statistical models such as 3D Morphable Models (3DMMs). In the first part of this thesis, we introduce a person-specific system that performs full head reenactment using ideas from video-to-video translation. Subsequently, we propose a novel approach to controllable video portrait synthesis, inspired from Implicit Neural Representations (INR). In the second part of the thesis, we focus on person-agnostic methods and present a GAN-based framework that performs video portrait reconstruction, full head reenactment, expression editing, novel pose synthesis and face frontalisation.Open Acces

    Non-local Neural Networks

    Full text link
    Both convolutional and recurrent operations are building blocks that process one local neighborhood at a time. In this paper, we present non-local operations as a generic family of building blocks for capturing long-range dependencies. Inspired by the classical non-local means method in computer vision, our non-local operation computes the response at a position as a weighted sum of the features at all positions. This building block can be plugged into many computer vision architectures. On the task of video classification, even without any bells and whistles, our non-local models can compete or outperform current competition winners on both Kinetics and Charades datasets. In static image recognition, our non-local models improve object detection/segmentation and pose estimation on the COCO suite of tasks. Code is available at https://github.com/facebookresearch/video-nonlocal-net .Comment: CVPR 2018, code is available at: https://github.com/facebookresearch/video-nonlocal-ne
    • …
    corecore