692 research outputs found

    Towards Urban General Intelligence: A Review and Outlook of Urban Foundation Models

    Full text link
    Machine learning techniques are now integral to the advancement of intelligent urban services, playing a crucial role in elevating the efficiency, sustainability, and livability of urban environments. The recent emergence of foundation models such as ChatGPT marks a revolutionary shift in the fields of machine learning and artificial intelligence. Their unparalleled capabilities in contextual understanding, problem solving, and adaptability across a wide range of tasks suggest that integrating these models into urban domains could have a transformative impact on the development of smart cities. Despite growing interest in Urban Foundation Models~(UFMs), this burgeoning field faces challenges such as a lack of clear definitions, systematic reviews, and universalizable solutions. To this end, this paper first introduces the concept of UFM and discusses the unique challenges involved in building them. We then propose a data-centric taxonomy that categorizes current UFM-related works, based on urban data modalities and types. Furthermore, to foster advancement in this field, we present a promising framework aimed at the prospective realization of UFMs, designed to overcome the identified challenges. Additionally, we explore the application landscape of UFMs, detailing their potential impact in various urban contexts. Relevant papers and open-source resources have been collated and are continuously updated at https://github.com/usail-hkust/Awesome-Urban-Foundation-Models

    The Yoga Analogy: Scaling-Up the U.S.’s Renewable Energy Sector Mindfully with New Technologies, Evolving Standards, Public Buy-In, Data Sharing, and Innovation Clusters

    Get PDF
    This paper focuses on innovative renewable energy devices, exploring how scientifically-based industry standards that continuously evolve with engineering design technology, the public’s buy-in and feeling of connectedness with groundbreaking devices, and innovation clusters that accelerate device development through data sharing and public-private partnerships can all help advance the U.S.’s domestic renewable energy industry. Part I analyzes challenges inherent to scaling- up novel renewable energy technologies while simultaneously developing the industry standards regulating them. Part II uses the Block Island Wind Farm, an offshore wind demonstration project, and Pavegen’s globally-deployed arrays of piezoelectric smart flooring tiles as examples illustrating the importance connectedness and engagement play in garnering public buy-in during a cutting-edge renewable energy device’s roll-out. Part III discusses private investors’ critical role in bearing financial risks associated with backing experimental technologies, promoting aesthetically unusual device designs, and integrating novel devices into the built environment. Part IV explores the advantages that data anonymization and data sharing within a data trust construct can produce for constituents in an innovation cluster, particularly those functioning together within a public-private partnership. Part V explores the benefits of introducing a renewable energy device prototype in an innovation cluster, where the government, academia, and industry collaborate and share data through public-private partnerships in an engaged, supportive, and technologically savvy community focused on accelerating the development of a particular industry. This paper concludes that by setting industry standards that continuously evolve in tandem with technologies they aim to regulate, having businesses’ investment-backed expectations remain a key driving force in renewable energy device development, and deploying government funding through innovation clusters that support data sharing and public-private partnerships in a particular industry, the U.S. can strike a desired balance and mindfully scale-up its nascent renewable energy industry

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Integrating Data Science and Earth Science

    Get PDF
    This open access book presents the results of three years collaboration between earth scientists and data scientist, in developing and applying data science methods for scientific discovery. The book will be highly beneficial for other researchers at senior and graduate level, interested in applying visual data exploration, computational approaches and scientifc workflows

    Towards Interoperable Research Infrastructures for Environmental and Earth Sciences

    Get PDF
    This open access book summarises the latest developments on data management in the EU H2020 ENVRIplus project, which brought together more than 20 environmental and Earth science research infrastructures into a single community. It provides readers with a systematic overview of the common challenges faced by research infrastructures and how a ‘reference model guided’ engineering approach can be used to achieve greater interoperability among such infrastructures in the environmental and earth sciences. The 20 contributions in this book are structured in 5 parts on the design, development, deployment, operation and use of research infrastructures. Part one provides an overview of the state of the art of research infrastructure and relevant e-Infrastructure technologies, part two discusses the reference model guided engineering approach, the third part presents the software and tools developed for common data management challenges, the fourth part demonstrates the software via several use cases, and the last part discusses the sustainability and future directions

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems
    • …
    corecore