183,256 research outputs found

    Supporting Story Synthesis: Bridging the Gap between Visual Analytics and Storytelling

    Get PDF
    Visual analytics usually deals with complex data and uses sophisticated algorithmic, visual, and interactive techniques. Findings of the analysis often need to be communicated to an audience that lacks visual analytics expertise. This requires analysis outcomes to be presented in simpler ways than that are typically used in visual analytics systems. However, not only analytical visualizations may be too complex for target audience but also the information that needs to be presented. Hence, there exists a gap on the path from obtaining analysis findings to communicating them, which involves two aspects: information and display complexity. We propose a general framework where data analysis and result presentation are linked by story synthesis, in which the analyst creates and organizes story contents. Differently, from the previous research, where analytic findings are represented by stored display states, we treat findings as data constructs. In story synthesis, findings are selected, assembled, and arranged in views using meaningful layouts that take into account the structure of information and inherent properties of its components. We propose a workflow for applying the proposed framework in designing visual analytics systems and demonstrate the generality of the approach by applying it to two domains, social media, and movement analysis

    The CLAIRE visual analytics system for analysing IR evaluation data

    Get PDF
    In this paper, we describe Combinatorial visuaL Analytics system for Information Retrieval Evaluation (CLAIRE), a Visual Analytics (VA) system for exploring and making sense of the performances of a large amount of Information Retrieval (IR) systems, in order to quickly and intuitively grasp which system configurations are preferred, what are the contributions of the different components and how these components interact together

    What-if analysis: A visual analytics approach to Information Retrieval evaluation

    Get PDF
    This paper focuses on the innovative visual analytics approach realized by the Visual Analytics Tool for Experimental Evaluation (VATE2) system, which eases and makes more effective the experimental evaluation process by introducing the what-if analysis. The what-if analysis is aimed at estimating the possible effects of a modification to an Information Retrieval (IR) system, in order to select the most promising fixes before implementing them, thus saving a considerable amount of effort. VATE2 builds on an analytical framework which models the behavior of the systems in order to make estimations, and integrates this analytical framework into a visual part which, via proper interaction and animations, receives input and provides feedback to the user. We conducted an experimental evaluation to assess the numerical performances of the analytical model and a validation of the visual analytics prototype with domain experts. Both the numerical evaluation and the user validation have shown that VATE2 is effective, innovative, and useful

    Design Spaces in Visual Analytics Based on Goals: Analytical Behaviour, Exploratory Investigation, Information Design & Perceptual Tasks

    Get PDF
    This paper considers a number of perspectives on design spaces in visual analytics and proposes a new set of four design spaces, based on user goals. Three of the user goals are derived from the literature and are categorised under the terms exploratory investigation, perceptual tasks, and information design. The fourth goal is categorised as analytical behaviour; a recently defined term referring to the study of decision-making facilitated by visual analytics. This paper contributes to the literature on decision-making in visual analytics with a survey of real-world applications within the analytical behaviour design space and by providing a new perspective on design spaces. Central to our analysis is the introduction of decision concepts and theories from economics into a visual analytics context. Given the recent interest in decision-making we wanted to understand the emerging topic of analytical behaviour as a design space and found it necessary to look at more than just decision-making to make a valuable contribution. The result is an initial framework suitable for use in the analysis or design of analytical behaviour applications

    Visual analytics in FCA-based clustering

    Full text link
    Visual analytics is a subdomain of data analysis which combines both human and machine analytical abilities and is applied mostly in decision-making and data mining tasks. Triclustering, based on Formal Concept Analysis (FCA), was developed to detect groups of objects with similar properties under similar conditions. It is used in Social Network Analysis (SNA) and is a basis for certain types of recommender systems. The problem of triclustering algorithms is that they do not always produce meaningful clusters. This article describes a specific triclustering algorithm and a prototype of a visual analytics platform for working with obtained clusters. This tool is designed as a testing frameworkis and is intended to help an analyst to grasp the results of triclustering and recommender algorithms, and to make decisions on meaningfulness of certain triclusters and recommendations.Comment: 11 pages, 3 figures, 2 algorithms, 3rd International Conference on Analysis of Images, Social Networks and Texts (AIST'2014). in Supplementary Proceedings of the 3rd International Conference on Analysis of Images, Social Networks and Texts (AIST 2014), Vol. 1197, CEUR-WS.org, 201

    A Progressive Visual Analytics Tool for Incremental Experimental Evaluation

    Full text link
    This paper presents a visual tool, AVIATOR, that integrates the progressive visual analytics paradigm in the IR evaluation process. This tool serves to speed-up and facilitate the performance assessment of retrieval models enabling a result analysis through visual facilities. AVIATOR goes one step beyond the common "compute wait visualize" analytics paradigm, introducing a continuous evaluation mechanism that minimizes human and computational resource consumption
    corecore