56,309 research outputs found

    RATM: Recurrent Attentive Tracking Model

    Full text link
    We present an attention-based modular neural framework for computer vision. The framework uses a soft attention mechanism allowing models to be trained with gradient descent. It consists of three modules: a recurrent attention module controlling where to look in an image or video frame, a feature-extraction module providing a representation of what is seen, and an objective module formalizing why the model learns its attentive behavior. The attention module allows the model to focus computation on task-related information in the input. We apply the framework to several object tracking tasks and explore various design choices. We experiment with three data sets, bouncing ball, moving digits and the real-world KTH data set. The proposed Recurrent Attentive Tracking Model performs well on all three tasks and can generalize to related but previously unseen sequences from a challenging tracking data set

    Pixel-Level Matching for Video Object Segmentation using Convolutional Neural Networks

    Full text link
    We propose a novel video object segmentation algorithm based on pixel-level matching using Convolutional Neural Networks (CNN). Our network aims to distinguish the target area from the background on the basis of the pixel-level similarity between two object units. The proposed network represents a target object using features from different depth layers in order to take advantage of both the spatial details and the category-level semantic information. Furthermore, we propose a feature compression technique that drastically reduces the memory requirements while maintaining the capability of feature representation. Two-stage training (pre-training and fine-tuning) allows our network to handle any target object regardless of its category (even if the object's type does not belong to the pre-training data) or of variations in its appearance through a video sequence. Experiments on large datasets demonstrate the effectiveness of our model - against related methods - in terms of accuracy, speed, and stability. Finally, we introduce the transferability of our network to different domains, such as the infrared data domain.Comment: To appear on ICCV 201

    CloudAR: A Cloud-based Framework for Mobile Augmented Reality

    Full text link
    Computation capabilities of recent mobile devices enable natural feature processing for Augmented Reality (AR). However, mobile AR applications are still faced with scalability and performance challenges. In this paper, we propose CloudAR, a mobile AR framework utilizing the advantages of cloud and edge computing through recognition task offloading. We explore the design space of cloud-based AR exhaustively and optimize the offloading pipeline to minimize the time and energy consumption. We design an innovative tracking system for mobile devices which provides lightweight tracking in 6 degree of freedom (6DoF) and hides the offloading latency from users' perception. We also design a multi-object image retrieval pipeline that executes fast and accurate image recognition tasks on servers. In our evaluations, the mobile AR application built with the CloudAR framework runs at 30 frames per second (FPS) on average with precise tracking of only 1~2 pixel errors and image recognition of at least 97% accuracy. Our results also show that CloudAR outperforms one of the leading commercial AR framework in several performance metrics

    Generic Multiview Visual Tracking

    Full text link
    Recent progresses in visual tracking have greatly improved the tracking performance. However, challenges such as occlusion and view change remain obstacles in real world deployment. A natural solution to these challenges is to use multiple cameras with multiview inputs, though existing systems are mostly limited to specific targets (e.g. human), static cameras, and/or camera calibration. To break through these limitations, we propose a generic multiview tracking (GMT) framework that allows camera movement, while requiring neither specific object model nor camera calibration. A key innovation in our framework is a cross-camera trajectory prediction network (TPN), which implicitly and dynamically encodes camera geometric relations, and hence addresses missing target issues such as occlusion. Moreover, during tracking, we assemble information across different cameras to dynamically update a novel collaborative correlation filter (CCF), which is shared among cameras to achieve robustness against view change. The two components are integrated into a correlation filter tracking framework, where the features are trained offline using existing single view tracking datasets. For evaluation, we first contribute a new generic multiview tracking dataset (GMTD) with careful annotations, and then run experiments on GMTD and the PETS2009 datasets. On both datasets, the proposed GMT algorithm shows clear advantages over state-of-the-art ones

    Self-taught learning of a deep invariant representation for visual tracking via temporal slowness principle

    Full text link
    Visual representation is crucial for a visual tracking method's performances. Conventionally, visual representations adopted in visual tracking rely on hand-crafted computer vision descriptors. These descriptors were developed generically without considering tracking-specific information. In this paper, we propose to learn complex-valued invariant representations from tracked sequential image patches, via strong temporal slowness constraint and stacked convolutional autoencoders. The deep slow local representations are learned offline on unlabeled data and transferred to the observational model of our proposed tracker. The proposed observational model retains old training samples to alleviate drift, and collect negative samples which are coherent with target's motion pattern for better discriminative tracking. With the learned representation and online training samples, a logistic regression classifier is adopted to distinguish target from background, and retrained online to adapt to appearance changes. Subsequently, the observational model is integrated into a particle filter framework to peform visual tracking. Experimental results on various challenging benchmark sequences demonstrate that the proposed tracker performs favourably against several state-of-the-art trackers.Comment: Pattern Recognition (Elsevier), 201

    Track Everything: Limiting Prior Knowledge in Online Multi-Object Recognition

    Full text link
    This paper addresses the problem of online tracking and classification of multiple objects in an image sequence. Our proposed solution is to first track all objects in the scene without relying on object-specific prior knowledge, which in other systems can take the form of hand-crafted features or user-based track initialization. We then classify the tracked objects with a fast-learning image classifier that is based on a shallow convolutional neural network architecture and demonstrate that object recognition improves when this is combined with object state information from the tracking algorithm. We argue that by transferring the use of prior knowledge from the detection and tracking stages to the classification stage we can design a robust, general purpose object recognition system with the ability to detect and track a variety of object types. We describe our biologically inspired implementation, which adaptively learns the shape and motion of tracked objects, and apply it to the Neovision2 Tower benchmark data set, which contains multiple object types. An experimental evaluation demonstrates that our approach is competitive with state-of-the-art video object recognition systems that do make use of object-specific prior knowledge in detection and tracking, while providing additional practical advantages by virtue of its generality.Comment: 15 page

    An unsupervised long short-term memory neural network for event detection in cell videos

    Full text link
    We propose an automatic unsupervised cell event detection and classification method, which expands convolutional Long Short-Term Memory (LSTM) neural networks, for cellular events in cell video sequences. Cells in images that are captured from various biomedical applications usually have different shapes and motility, which pose difficulties for the automated event detection in cell videos. Current methods to detect cellular events are based on supervised machine learning and rely on tedious manual annotation from investigators with specific expertise. So that our LSTM network could be trained in an unsupervised manner, we designed it with a branched structure where one branch learns the frequent, regular appearance and movements of objects and the second learns the stochastic events, which occur rarely and without warning in a cell video sequence. We tested our network on a publicly available dataset of densely packed stem cell phase-contrast microscopy images undergoing cell division. This dataset is considered to be more challenging that a dataset with sparse cells. We compared our method to several published supervised methods evaluated on the same dataset and to a supervised LSTM method with a similar design and configuration to our unsupervised method. We used an F1-score, which is a balanced measure for both precision and recall. Our results show that our unsupervised method has a higher or similar F1-score when compared to two fully supervised methods that are based on Hidden Conditional Random Fields (HCRF), and has comparable accuracy with the current best supervised HCRF-based method. Our method was generalizable as after being trained on one video it could be applied to videos where the cells were in different conditions. The accuracy of our unsupervised method approached that of its supervised counterpart

    Vision-based Traffic Flow Prediction using Dynamic Texture Model and Gaussian Process

    Full text link
    In this paper, we describe work in progress towards a real-time vision-based traffic flow prediction (TFP) system. The proposed method consists of three elemental operators, that are dynamic texture model based motion segmentation, feature extraction and Gaussian process (GP) regression. The objective of motion segmentation is to recognize the target regions covering the moving vehicles in the sequence of visual processes. The feature extraction operator aims to extract useful features from the target regions. The extracted features are then mapped to the number of vehicles through the operator of GP regression. A training stage using historical visual data is required for determining the parameter values of the GP. Using a low-resolution visual data set, we performed preliminary evaluations on the performance of the proposed method. The results show that our method beats a benchmark solution based on Gaussian mixture model, and has the potential to be developed into qualified and practical solutions to real-time TFP.Comment: 8 pages, 4 figures, conferenc

    MAVOT: Memory-Augmented Video Object Tracking

    Full text link
    We introduce a one-shot learning approach for video object tracking. The proposed algorithm requires seeing the object to be tracked only once, and employs an external memory to store and remember the evolving features of the foreground object as well as backgrounds over time during tracking. With the relevant memory retrieved and updated in each tracking, our tracking model is capable of maintaining long-term memory of the object, and thus can naturally deal with hard tracking scenarios including partial and total occlusion, motion changes and large scale and shape variations. In our experiments we use the ImageNet ILSVRC2015 video detection dataset to train and use the VOT-2016 benchmark to test and compare our Memory-Augmented Video Object Tracking (MAVOT) model. From the results, we conclude that given its oneshot property and simplicity in design, MAVOT is an attractive approach in visual tracking because it shows good performance on VOT-2016 benchmark and is among the top 5 performers in accuracy and robustness in occlusion, motion changes and empty target.Comment: Submitted to CVPR201

    Siamese Attentional Keypoint Network for High Performance Visual Tracking

    Full text link
    In this paper, we investigate the impacts of three main aspects of visual tracking, i.e., the backbone network, the attentional mechanism, and the detection component, and propose a Siamese Attentional Keypoint Network, dubbed SATIN, for efficient tracking and accurate localization. Firstly, a new Siamese lightweight hourglass network is specially designed for visual tracking. It takes advantage of the benefits of the repeated bottom-up and top-down inference to capture more global and local contextual information at multiple scales. Secondly, a novel cross-attentional module is utilized to leverage both channel-wise and spatial intermediate attentional information, which can enhance both discriminative and localization capabilities of feature maps. Thirdly, a keypoints detection approach is invented to trace any target object by detecting the top-left corner point, the centroid point, and the bottom-right corner point of its bounding box. Therefore, our SATIN tracker not only has a strong capability to learn more effective object representations, but also is computational and memory storage efficiency, either during the training or testing stages. To the best of our knowledge, we are the first to propose this approach. Without bells and whistles, experimental results demonstrate that our approach achieves state-of-the-art performance on several recent benchmark datasets, at a speed far exceeding 27 frames per second.Comment: Accepted by Knowledge-Based SYSTEM
    corecore