9,509 research outputs found

    Grey Level Visual Cryptography for General Access Structures

    Get PDF
    Visual cryptography, first introduced by Naor and Shamir, allows a secret (black and white) image to be encoded and distributed to a set of participants such that certain predefined sets of participants may reconstruct the image without any computation. In 2000, Blundo, De Santis, and Naor introduced a model for grey-level visual cryptography which is a generalization of visual cryptography for general access structures. Grey-level visual cryptography extends this model to include grey-scale images. Decoding is done by the human visual system. In this thesis we survey known results of grey-level visual cryptography and visual cryptography for general access structures. We extend several visual cryptography constructions to grey-level visual cryptography, and derive new results on the minimum possible pixel expansion for all possible access structures on at most four participants

    Two Step Share Visual Cryptography Algorithm for Secure Visual Sharing

    Get PDF
    This paper re - examines the problem of visual secret sharing for general access structures by using visual cryptograms of random grids (VCRG). Given a binary or color secret image shared by a set of n participants with a strong access structure, we devise t wo effective algorithms to produce a set of VCRG so that the members in each qualified set can reconstruct the secret image by superimposing their sh ares, while those in any forbidden set cannot. The basic 2 out of 2 visual cryptography model consists of a secret message encoded into two transparencies, one transparency representing the cipher text and the other acting as a secret key. Both transparencies appear to be random dots when inspected individually and provide no information about the original clea r text. However, by carefully aligning the transparencies, the original secret message is reproduced. The actual decoding is accomplished by the human visual system. Our algorithms do not require any extr a pixel expansion, which is indispensable and grows exponentially as n increases in conventional visual cryptographic schemes

    Bounds for Visual Cryptography Schemes

    Get PDF
    In this paper, we investigate the best pixel expansion of the various models of visual cryptography schemes. In this regard, we consider visual cryptography schemes introduced by Tzeng and Hu [13]. In such a model, only minimal qualified sets can recover the secret image and that the recovered secret image can be darker or lighter than the background. Blundo et al. [4] introduced a lower bound for the best pixel expansion of this scheme in terms of minimal qualified sets. We present another lower bound for the best pixel expansion of the scheme. As a corollary, we introduce a lower bound, based on an induced matching of hypergraph of qualified sets, for the best pixel expansion of the aforementioned model and the traditional model of visual cryptography realized by basis matrices. Finally, we study access structures based on graphs and we present an upper bound for the smallest pixel expansion in terms of strong chromatic index

    An Epitome of Multi Secret Sharing Schemes for General Access Structure

    Full text link
    Secret sharing schemes are widely used now a days in various applications, which need more security, trust and reliability. In secret sharing scheme, the secret is divided among the participants and only authorized set of participants can recover the secret by combining their shares. The authorized set of participants are called access structure of the scheme. In Multi-Secret Sharing Scheme (MSSS), k different secrets are distributed among the participants, each one according to an access structure. Multi-secret sharing schemes have been studied extensively by the cryptographic community. Number of schemes are proposed for the threshold multi-secret sharing and multi-secret sharing according to generalized access structure with various features. In this survey we explore the important constructions of multi-secret sharing for the generalized access structure with their merits and demerits. The features like whether shares can be reused, participants can be enrolled or dis-enrolled efficiently, whether shares have to modified in the renewal phase etc., are considered for the evaluation

    PYTHON IMPLEMENTATION OF VISUAL SECRET SHARING SCHEMES

    Get PDF
    Visual secret sharing schemes (VSS) represent an important concept of visual cryptography. They permit the sharing of a secret image between multiple participants so that only authorized groups can recover the secret. This paper considers the software implementation of some black-and-white secret images VSS in Python programming language. PIL (Python Imaging Library) provides strong image processing capabilities, making the library suitable for this kind of implementation. We present samples of the results obtained from the software computation and draw some conclusions.visual secret sharing, visual cryptography, Python, PIL (Python Imaging Library)

    A Randomized Kernel-Based Secret Image Sharing Scheme

    Full text link
    This paper proposes a (k,nk,n)-threshold secret image sharing scheme that offers flexibility in terms of meeting contrasting demands such as information security and storage efficiency with the help of a randomized kernel (binary matrix) operation. A secret image is split into nn shares such that any kk or more shares (k≤nk\leq n) can be used to reconstruct the image. Each share has a size less than or at most equal to the size of the secret image. Security and share sizes are solely determined by the kernel of the scheme. The kernel operation is optimized in terms of the security and computational requirements. The storage overhead of the kernel can further be made independent of its size by efficiently storing it as a sparse matrix. Moreover, the scheme is free from any kind of single point of failure (SPOF).Comment: Accepted in IEEE International Workshop on Information Forensics and Security (WIFS) 201
    • …
    corecore