3 research outputs found

    Vision-Based Range Regulation of a Leader-Follower Formation

    Get PDF
    ©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TCST.2008.2000979This brief describes a single-vehicle tracking algorithm relying on active contours for target extraction and an extended Kalman filter for relative position estimation. The primary difficulty lies in the estimation and regulation of range using monocular vision. The work represents a first step towards treating the problem of the control of several unmanned vehicles flying in formation using only local visual information. In particular, allowing only onboard passive sensing of the external environment, we seek to study the achievable closed-loop performance under this model

    Development of Path Following and Cooperative Motion Control Algorithms for Autonomous Underwater Vehicles

    Get PDF
    Research on autonomous underwater vehicle (AUV) is motivating and challenging owing to their specific applications such as defence, mine counter measure, pipeline inspections, risky missions e.g. oceanographic observations, bathymetric surveys, ocean floor analysis, military uses, and recovery of lost man-made objects. Motion control of AUVs is concerned with navigation, path following and co-operative motion control problems. A number of control complexities are encountered in AUV motion control such as nonlinearities in mass matrix, hydrodynamic terms and ocean currents. These pose challenges to develop efficient control algorithms such that the accurate path following task and effective group co-ordination can be achieved in face of parametric uncertainties and disturbances and communication constraints in acoustic medium. This thesis first proposes development of a number of path following control laws and new co-operative motion control algorithms for achieving successful motion control objectives. These algorithms are potential function based proportional derivative path following control laws, adaptive trajectory based formation control, formation control of multiple AUVs steering towards a safety region, mathematical potential function based flocking control and fuzzy potential function based flocking control. Development of a path following control algorithm aims at generating appropriate control law, such that an AUV tracks a predefined desired path. In this thesis first path following control laws are developed for an underactuated (the number of inputs are lesser than the degrees of freedom) AUV. A potential function based proportional derivative (PFPD) control law is derived to govern the motion of the AUV in an obstacle-rich environment (environment populated by obstacles). For obstacle avoidance, a mathematical potential function is exploited, which provides a repulsive force between the AUV and the solid obstacles intersecting the desired path. Simulations were carried out considering a special type of AUV i.e. Omni Directional Intelligent Navigator (ODIN) to study the efficacy of the developed PFPD controller. For achieving more accuracy in the path following performance, a new controller (potential function based augmented proportional derivative, PFAPD) has been designed by the mass matrix augmentation with PFPD control law. Simulations were made and the results obtained with PFAPD controller are compared with that of PFPD controlle
    corecore