60,778 research outputs found
Parameter Optimisation of a Virtual Synchronous Machine in a Microgrid
Parameters of a virtual synchronous machine in a small microgrid are
optimised. The dynamical behaviour of the system is simulated after a
perturbation, where the system needs to return to its steady state. The cost
functional evaluates the system behaviour for different parameters. This
functional is minimised by Parallel Tempering. Two perturbation scenarios are
investigated and the resulting optimal parameters agree with analytical
predictions. Dependent on the focus of the optimisation different optima are
obtained for each perturbation scenario. During the transient the system leaves
the allowed voltage and frequency bands only for a short time if the
perturbation is within a certain range.Comment: 17 pages, 5 figure
Virtual synchronous-machine control of voltage-source converters in a low-voltage microgrid
In order to facilitate the further integration of distributed renewable generation into existing power systems, enhanced control schemes for grid-tied power electronic converters are necessary to ensure non-synchronous power sources can provide power and support to the grid. The virtual-synchronous-machine concept proposes the use of control schemes to enable static generators to operate with the dynamics of rotating synchronous generators. In this paper, a control scheme is presented based on the principle of active-power synchronization to regulate the active power of a grid-tied voltage-source converter based on an emulation of the synchronous-machine swing equation. Design of a cascaded inner-loop voltage and resonant current control is presented to regulate the output voltage as specified via the outer-loop virtual-machine control scheme responsible for power regulation. The performance of this control scheme is investigated within the context of microgrid operation for the provision of active and reactive power to the system, and microgrid frequency support. Experimental validation is provided via the use of a 15 kVA three-phase VSC in a 90 kVA 400V microgrid
Stability analysis of a grid-connected VSC controlled by SPC
In the near future a large part of traditional generation based on conventional synchronous machines (SM) will be replaced by renewable generation based on voltage source converters (VSC). In this sense, power system operators have begun to demand VSC-based power plants be able to participate in the frequency and voltage regulation, and are also interested in services like inertia emulation and damping of power oscillation, functions that today are carried out by large synchronous generators. Therefore, several studies have suggested new ways to control voltage source converters, that try to emulate the behavior of synchronous generators and are known generically as Virtual Synchronous Machines. The synchronous power controller (SPC) is a flexible solution that emulates the classical swing equation of a synchronous machine and improves its response. The SPC inherits the advantages of conventional synchronous generators, while it fixes many of its drawbacks. In this work, a sensitivity analysis of a VSC connected to the grid and controlled by SPC is performed. In this sense, a non-linear mathematical model of the system is first developed. This non-linear model is then linearized, obtaining a linear model from which the eigenvalues and sensitivities of the system to some relevant parameters are calculated. Finally, time-domain simulations are performed to confirm the results of the sensitivity analysis.Postprint (author's final draft
Start-up of virtual synchronous machine: methods and experimental comparison
A modern grid is smarter mainly in the advance in information and communication technologies, while the power processing mechanism does not make a big difference. To make a modern grid smarter, the grid control should be improved to process the power in a smarter way. Therefore, it is easily foreseen that virtual synchronous machines, which emulates the synchronous machines based on power converters, may have big potentials in a future energy internet. This paper uses the Synchronous Power Controller with emulated and improved synchronous machine characteristics for renewable generation systems and proposes two start-up strategies. The proposed strategies are explained in detail, verified and compared by experimental results.Peer ReviewedPostprint (published version
On Accuracy of Virtual Signal Injection based MTPA Operation of Interior Permanent Magnet Synchronous Machine Drives
This correspondence analyzes the accuracy of maximum torque per ampere (MTPA) operations of interior permanent magnet machines based on the technique described in [T. Sun, J. Wang, and X. Chen, “Maximum Torque Per Ampere (MTPA) Control for Interior Permanent Magnet Synchronous Machine Drives Based on Virtual Signal Injection,’’ IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5036-5045, Sep. 2015] in responses to a few inquiries made by the readers. It is shown that due to parameter variations with stator currents, any technique for MTPA tracking based on piecewise constant parameter assumption, i.e., the machine parameters are assumed as constants during the calculation of ∂Te/∂β, would result in tracking error even though the machine parameters are obtained from lookup table or online machine parameter estimations. The error is dependent on machine nonlinear characteristics and operating conditions. It is also shown that for the prototype interior permanent magnet synchronous machine the virtual signal injection control technique described in the paper mentioned above yields a better tracking accuracy
Frequency support characteristics of grid-interactive power converters based on the synchronous power controller
Grid-interactive converters with primary frequency control and inertia emulation have emerged and are promising for future renewable generation plants because of the contribution in power system stabilization. This paper gives a synchronous active power control solution for gridinteractive converters , as a way to emulate synchronous generators for inerita characteristics and load sharing. As design considerations, the virtual angle stability and transient response are both analyzed, and the detailed implementation structure is also given without entailing any difficulty in practice. The analytical and experimental validation of frequency support characteristics differentiates the work from other publications on generator emulation control. The 10 kW simulation and experimental frequency sweep tests on a regenerative source test bed present good performance of the proposed control in showing inertia and droop characteristics, as well as the controllable transient response.Peer ReviewedPostprint (author's final draft
LMI-based control design to enhance robustness of synchronous power controller
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Synchronous power controller (SPC) has emerged as a suitable technique to equip grid-connected inverters with grid supporting functionalities such as inertial emulation and frequency/voltage support by mimicking the behavior of synchronous machines. Although the feasibility of the SPC has been experimentally verified under various operating conditions, parameter tuning for the SPC to ensure a stable inverter system has not been adequately addressed in the literature. To fill this gap, this paper presents a robust control design for the SPC to ensure its stable operation under the grid impedance variation. The proposed design procedure consists of system modelling and robust optimal parameter selection by using linear matrix inequality approach. The effectiveness of the proposed control design is proven by means of simulations and experiments.Peer ReviewedPostprint (author's final draft
Multi-terminal HVDC grids with inertia mimicry capability
The high-voltage multi-terminal dc (MTDC) systems are foreseen to experience an important development in the next years. Currently, they have appeared to be a prevailing technical and economical solution for harvesting offshore wind energy. In this study, inertia mimicry capability is added to a voltage-source converter-HVDC grid-side station in an MTDC grid connected to a weak ac grid, which can have low inertia or even operate as an islanded grid. The presented inertia mimicry control is integrated in the generalised voltage droop strategy implemented at the primary level of a two-layer hierarchical control structure of the MTDC grid to provide higher flexibility, and thus controllability to the network. Besides, complete control framework from the operational point of view is developed to integrate the low-level control of the converter stations in the supervisory control centre of the MTDC grid. A scaled laboratory test results considering the international council on large electric systems (CIGRE) B4 MTDC grid demonstrate the good performance of the converter station when it is connected to a weak islanded ac grid.Peer ReviewedPostprint (author's final draft
- …
