3,125 research outputs found

    A constraint manager to support virtual maintainability

    Get PDF
    Virtual prototyping tools have already captivated the industry's interest as viable design tool. One of the key challenges for the research community is to extend the capabilities of Virtual Reality technology beyond its current scope of ergonomics and design reviews. The research presented in this paper is part of a larger research programme that aims to perform maintainability assessment on virtual prototypes. This paper discusses the design and implementation of a geometric constraint manager that has been designed to support physical realism and interactive assembly and disassembly tasks within virtual environments. The key techniques employed by the constraint manager are direct interaction, automatic constraint recognition, constraint satisfaction and constrained motion. Various optimization techniques have been implemented to achieve real-time interaction with large industrial models

    Disassembly Sequence Evaluation: A User Study Leveraging Immersive Computing Technologies

    Get PDF
    As interest in product recovery, reuse, and recycling rises, planning and evaluating disassembly sequences are becoming increasingly important. The manner in which a product can be taken apart strongly influences end-of-life (EOL) operations and costs. Early disassembly planning can also inform non-EOL processes including repair and routine maintenance. Recently, research has concentrated on creating optimization algorithms which automatically generate disassembly sequences. These algorithms often require data that are unavailable or estimated with high uncertainty. Furthermore, industries often employ CAD modeling software to evaluate disassembly sequences during the design stage. The combination of these methods result in mathematically generated solutions, however, the solutions may not account for attributes that are difficult to quantify (human interaction). To help designers better explore and understand disassembly sequence opportunities, the research presented in this paper combines the value of mathematical modeling with the benefits of immersive computing technologies (ICT) to aid in early design decision making. For the purposes of this research, an ICT application was developed. The application displays both 3D geometry of a product and an interactive graph visualization of existing disassembly sequences. The user can naturally interact with the geometric models and explore sequences outlined in the graph visualization. The calculated optimal path can be highlighted allowing the user to quickly compare the optimal sequence against alternatives. The application has been implemented in a three wall immersive projection environment. A user study involving a hydraulic pump assembly was conducted. The results suggest that this approach may be a viable method of evaluating disassembly sequences early in design

    Virtual assembly rapid prototyping of near net shapes

    Get PDF
    Virtual reality (VR) provides another dimension to many engineering applications. Its immersive and interactive nature allows an intuitive approach to study both cognitive activities and performance evaluation. Market competitiveness means having products meet form, fit and function quickly. Rapid Prototyping and Manufacturing (RP&M) technologies are increasingly being applied to produce functional prototypes and the direct manufacturing of small components. Despite its flexibility, these systems have common drawbacks such as slow build rates, a limited number of build axes (typically one) and the need for post processing. This paper presents a Virtual Assembly Rapid Prototyping (VARP) project which involves evaluating cognitive activities in assembly tasks based on the adoption of immersive virtual reality along with a novel non-layered rapid prototyping for near net shape (NNS) manufacturing of components. It is envisaged that this integrated project will facilitate a better understanding of design for manufacture and assembly by utilising equivalent scale digital and physical prototyping in one rapid prototyping system. The state of the art of the VARP project is also presented in this paper

    Modeling a complex production line using virtual cells

    Get PDF
    This chapter presents modeling and simulation of a complex multistage multiproduct production line with four closed loop networks configuration, which also act as a virtual cell. This allows for a greater understanding of the functions within the production line through the simplification of the production flow with the addition of buffers between the cells. Virtual cells are crucial in this instance due to the dynamic configuration, which could help production system designers in optimizing the complex configuration of production

    Immersive Computing Technology to Investigate Tradeoffs Under Uncertainty in Disassembly Sequence Planning

    Get PDF
    The scientific and industrial communities have begun investigating the possibility of making product recovery economically viable. Disassembly sequence planning may be used to make end-of-life product take-back processes more cost effective. Much of the research involving disassembly sequence planning relies on mathematical optimization models. These models often require input data that is unavailable or can only be approximated with high uncertainty. In addition, there are few mathematical models that include consideration of the potential of product damage during disassembly operations. The emergence of Immersive Computing Technologies (ICT) enables designers to evaluate products without the need for physical prototypes. Utilizing unique 3D user interfaces, designers can investigate a multitude of potential disassembly operations without resorting to disassembly of actual products. The information obtained through immersive simulation can be used to determine the optimum disassembly sequence. The aim of this work is to apply a decision analytical approach in combination with immersive computing technology to optimize the disassembly sequence while considering trade-offs between two conflicting attributes: disassembly cost and damage estimation during disassembly operations. A wooden Burr puzzle is used as an example product test case. Immersive human computer interaction is used to determine input values for key variables in the mathematical model. The results demonstrate that the use of dynamic programming algorithms coupled with virtual disassembly simulation is an effective method for evaluating multiple attributes in disassembly sequence planning. This paper presents a decision analytical approach, combined with immersive computing techniques, to optimize the disassembly sequence. Future work will concentrate on creating better methods of estimating damage in virtual disassembly environments and using the immersive technology to further explore the feasible design space

    Human Arm simulation for interactive constrained environment design

    Get PDF
    During the conceptual and prototype design stage of an industrial product, it is crucial to take assembly/disassembly and maintenance operations in advance. A well-designed system should enable relatively easy access of operating manipulators in the constrained environment and reduce musculoskeletal disorder risks for those manual handling operations. Trajectory planning comes up as an important issue for those assembly and maintenance operations under a constrained environment, since it determines the accessibility and the other ergonomics issues, such as muscle effort and its related fatigue. In this paper, a customer-oriented interactive approach is proposed to partially solve ergonomic related issues encountered during the design stage under a constrained system for the operator's convenience. Based on a single objective optimization method, trajectory planning for different operators could be generated automatically. Meanwhile, a motion capture based method assists the operator to guide the trajectory planning interactively when either a local minimum is encountered within the single objective optimization or the operator prefers guiding the virtual human manually. Besides that, a physical engine is integrated into this approach to provide physically realistic simulation in real time manner, so that collision free path and related dynamic information could be computed to determine further muscle fatigue and accessibility of a product designComment: International Journal on Interactive Design and Manufacturing (IJIDeM) (2012) 1-12. arXiv admin note: substantial text overlap with arXiv:1012.432
    • 

    corecore