77,530 research outputs found

    Brave: A Virtual Reality Game

    Get PDF
    Virtual Reality has a wide range of applications whether it be in educational, medical or gaming. There is a huge demand for Virtual Reality in gaming industries as due to this immersive technology gamer feels he/she is part of gaming environment rather than a mere observer. VR game is a powerful tool to depict mental illness of the patient as mental illness is often underestimated and misunderstood. This will help to educate masses about it and in a way create awareness and eradicate its stigma. We trying to develop a game on the theme based on social anxiety

    Perceiving Mass in Mixed Reality through Pseudo-Haptic Rendering of Newton's Third Law

    Get PDF
    In mixed reality, real objects can be used to interact with virtual objects. However, unlike in the real world, real objects do not encounter any opposite reaction force when pushing against virtual objects. The lack of reaction force during manipulation prevents users from perceiving the mass of virtual objects. Although this could be addressed by equipping real objects with force-feedback devices, such a solution remains complex and impractical.In this work, we present a technique to produce an illusion of mass without any active force-feedback mechanism. This is achieved by simulating the effects of this reaction force in a purely visual way. A first study demonstrates that our technique indeed allows users to differentiate light virtual objects from heavy virtual objects. In addition, it shows that the illusion is immediately effective, with no prior training. In a second study, we measure the lowest mass difference (JND) that can be perceived with this technique. The effectiveness and ease of implementation of our solution provides an opportunity to enhance mixed reality interaction at no additional cost

    Asymptotic Freedom: From Paradox to Paradigm

    Full text link
    Asymptotic freedom was developed as a response to two paradoxes: the weirdness of quarks, and in particular their failure to radiate copiously when struck; and the coexistence of special relativity and quantum theory, despite the apparent singularity of quantum field theory. It resolved these paradoxes, and catalyzed the development of several modern paradigms: the hard reality of quarks and gluons, the origin of mass from energy, the simplicity of the early universe, and the power of symmetry as a guide to physical law.Comment: 26 pages, 10 figures. Lecture on receipt of the 2004 Nobel Prize. v2: typo (in Ohm's law) correcte

    Radical Conservatism and Nucleon Decay

    Full text link
    Unification of couplings, observation of neutrino masses in the expected range, and several other considerations confirm central implications of straightforward gauge unification based on SO(10) or a close relative and incorporating low-energy supersymmetry. The remaining outstanding consequence of this circle of ideas, yet to be observed, is nucleon instability. Clearly, we should aspire to be as specific as possible regarding the rate and form of such instability. I argue that not only esthetics, but also the observed precision of unification of couplings, favors an economical symmetry-breaking (Higgs) structure. Assuming this, one can exploit its constraints to build reasonably economical, overconstrained yet phenomenologically viable models of quark and lepton masses. Putting it all together, one arrives at reasonably concrete, hopeful expectations regarding nucleon decay. These expectations are neither ruled out by existing experiments, nor hopelessly inaccessible.Comment: LaTeX, 14 pages, 4 figures; moved reference, corrected typo, improved two figure

    On the fundamental role of massless form of matter in physics. Quantum gravity

    Get PDF
    In the article, with the help of various models, the thesis on the fundamental nature of the field form of matter in physics is considered. In the first chapter a model of special relativity is constructed, on the basis of which the priority of the massless form of matter is revealed. In the second chapter, a field model of inert and heavy mass is constructed and on this basis the mechanism of inertia and gravity of weighty bodies is revealed. In the third chapter, the example of geons shows the fundamental nature of a massless form of matter on the Planck scale. The three-dimensionality of the observable space is substantiated. In the fourth chapter, we consider a variant of solving the problem of singularities in general relativity using the example of multidimensional spaces. The last chapter examines the author's approach to quantum gravity. The conclusions do not contradict the main thesis of the article on the fundamental nature of the massless form of matter. We emphasize the qualitative nature of the presentation of the material in the article

    Quantum Chromodynamics and Hadrons: an Elementary Introduction

    Full text link
    Notes of five lectures given at the 2003 European School of High-Energy Physics, Tsakhkadzor, Armenia, September 2003Comment: 52 pages, 25 figures, latex, cernrep.cls; lectures at the 2003 European School of High-Energy Physics, Tsakhkadzor, Armenia, September 200
    corecore