107 research outputs found

    Radar Imaging Based on IEEE 802.11ad Waveform in V2I Communications

    Full text link
    Since most of vehicular radar systems are already exploiting millimeter-wave (mmWave) spectra, it would become much more feasible to implement a joint radar and communication system by extending communication frequencies into the mmWave band. In this paper, an IEEE 802.11ad waveform-based radar imaging technique is proposed for vehicular settings. A roadside unit (RSU) transmits the IEEE 802.11ad waveform to a vehicle for communications while the RSU also listens to the echoes of transmitted waveform to perform inverse synthetic aperture radar (ISAR) imaging. To obtain high-resolution images of the vehicle, the RSU needs to accurately estimate round-trip delays, Doppler shifts, and velocity of vehicle. The proposed ISAR imaging first estimates the round-trip delays using a good correlation property of Golay complementary sequences in the IEEE 802.11ad preamble. The Doppler shifts are then obtained using least square estimation from the echo signals and refined to compensate phase wrapping caused by phase rotation. The velocity of vehicle is determined using an equation of motion and the estimated Doppler shifts. Simulation results verify that the proposed technique is able to form high-resolution ISAR images from point scatterer models of realistic vehicular settings with different viewpoints. The proposed ISAR imaging technique can be used for various vehicular applications, e.g., traffic condition analyses or advanced collision warning systems

    Radar Imaging Based on IEEE 802.11ad Waveform

    Full text link
    The extension to millimeter-wave (mmWave) spectrum of communication frequency band makes it easy to implement a joint radar and communication system using single hardware. In this paper, we propose radar imaging based on the IEEE 802.11ad waveform for a vehicular setting. The necessary parameters to be estimated for inverse synthetic aperture radar (ISAR) imaging are sampled version of round-trip delay, Doppler shift, and vehicular velocity. The delay is estimated using the correlation property of Golay complementary sequences embedded on the IEEE 802.11ad preamble. The Doppler shift is first obtained from least square estimation using radar return signals and refined by correcting the phase uncertainty of Doppler shift by phase rotation. The vehicular velocity is determined from the estimated Doppler shifts and an equation of motion. Finally, an ISAR image is formed with the acquired parameters. Simulation results show that it is possible to obtain recognizable ISAR image from a point scatterer model of a realistic vehicular setting.Comment: 6 pages, 6 figures, and accepted for 2020 IEEE Global Communications Conference (GLOBECOM

    An Overview of Signal Processing Techniques for Joint Communication and Radar Sensing

    Get PDF
    Joint communication and radar sensing (JCR) represents an emerging research field aiming to integrate the above two functionalities into a single system, by sharing the majority of hardware, signal processing modules and, in a typical case, the transmitted signal. The close cooperation of the communication and sensing functions can enable significant improvement of spectrum efficiency, reduction of device size, cost and power consumption, and improvement of performance of both functions. Advanced signal processing techniques are critical for making the integration efficient, from transmission signal design to receiver processing. This paper provides a comprehensive overview of the state-of-the-art on JCR systems from the signal processing perspective. A balanced coverage on both transmitter and receiver is provided for three types of JCR systems, namely, communication-centric, radar-centric, and joint design and optimization
    • …
    corecore