3,263,811 research outputs found

    The performance management of education services staff in Scottish local authorities: an evaluation

    Get PDF
    Investigates the extent to which Scottish local authorities measured the performance of education services staff

    Fuzzy virtual ligands for virtual screening

    Get PDF
    A new method to bridge the gap between ligand and receptor-based methods in virtual screening (VS) is presented. We introduce a structure-derived virtual ligand (VL) model as an extension to a previously published pseudo-ligand technique [1]: LIQUID [2] fuzzy pharmacophore virtual screening is combined with grid-based protein binding site predictions of PocketPicker [3]. This approach might help reduce bias introduced by manual selection of binding site residues and introduces pocket shape information to the VL. It allows for a combination of several protein structure models into a single "fuzzy" VL representation, which can be used to scan screening compound collections for ligand structures with a similar potential pharmacophore. PocketPicker employs an elaborate grid-based scanning procedure to determine buried cavities and depressions on the protein's surface. Potential binding sites are represented by clusters of grid probes characterizing the shape and accessibility of a cavity. A rule-based system is then applied to project reverse pharmacophore types onto the grid probes of a selected pocket. The pocket pharmacophore types are assigned depending on the properties and geometry of the protein residues surrounding the pocket with regard to their relative position towards the grid probes. LIQUID is used to cluster representative pocket probes by their pharmacophore types describing a fuzzy VL model. The VL is encoded in a correlation vector, which can then be compared to a database of pre-calculated ligand models. A retrospective screening using the fuzzy VL and several protein structures was evaluated by ten fold cross-validation with ROC-AUC and BEDROC metrics, obtaining a significant enrichment of actives. Future work will be devoted to prospective screening using a novel protein target of Helicobacter pylori and compounds from commercial providers

    Virtual numbers for virtual machines?

    Get PDF
    Knowing the number of virtual machines (VMs) that a cloud physical hardware can (further) support is critical as it has implications on provisioning and hardware procurement. However, current methods for estimating the maximum number of VMs possible on a given hardware is usually the ratio of the specifications of a VM to the underlying cloud hardware’s specifications. Such naive and linear estimation methods mostly yield impractical limits as to how many VMs the hardware can actually support. It was found that if we base on the naive division method, user experience on VMs at those limits would be severely degraded. In this paper, we demonstrate through experimental results, the significant gap between the limits derived using the estimation method mentioned above and the actual situation. We believe for a more practicable estimation of the limits of the underlying infrastructure

    What am I? Virtual Machines and the Mind/Body Problem

    Get PDF
    When your word processor or email program is running on your computer, this creates a "virtual machine” that manipulates windows, files, text, etc. What is this virtual machine, and what are the virtual objects it manipulates? Many standard arguments in the philosophy of mind have exact analogues for virtual machines and virtual objects, but we do not want to draw the wild metaphysical conclusions that have sometimes tempted philosophers in the philosophy of mind. A computer file is not made of epiphenomenal ectoplasm. I argue instead that virtual objects are "supervenient objects". The stereotypical example of supervenient objects is the statue and the lump of clay. To this end I propose a theory of supervenient objects. Then I turn to persons and mental states. I argue that my mental states are virtual states of a cognitive virtual machine implemented on my body, and a person is a supervenient object supervening on his cognitive virtual machine

    Virtual actuators with virtual sensors

    Get PDF
    The virtual actuator approach to bond graph based control is extended to use virtual sensor inputs; this allows relative degree conditions on the controller to be relaxed. Furthermore, the effect of the transfer system can be eliminated from the closed loop system. Illustrative examples are given
    corecore