612 research outputs found

    Can quantum systems succumb to their own (gravitational) attraction?

    Full text link
    The gravitational interaction is generally considered to be too weak to be easily submitted to systematic experimental investigation in the quantum, microscopic, domain. In this paper we attempt to remedy this situation by considering the gravitational influence exerted by a crystalline nanosphere of mesoscopic size on itself, in the semi-classical, mean field, regime. We study in depth the self-localisation process induced by the corresponding non-linear potential of (gravitational) self-interaction. In particular, we characterize the stability of the associated self-collapsed ground state and estimate the magnitude of the corrections that are due to the internal structure of the object (this includes size-effects and corrections due to the discrete, atomic, structure of the sphere). Finally, we derive an approximated, gaussian, dynamics which mimics several essential features of the self-gravitating dynamics and, based on numerical results derived from this model, we propose a concrete experimental setting which we believe might, in the foreseeable future, reveal the existence of gravitational self-interaction effects.Comment: 58 pages, 14 figure

    Instability of a uniformly collapsing cloud of classical and quantum self-gravitating Brownian particles

    Full text link
    We study the growth of perturbations in a uniformly collapsing cloud of self-gravitating Brownian particles. This problem shares analogies with the formation of large-scale structures in a universe experiencing a "big-crunch" or with the formation of stars in a molecular cloud experiencing gravitational collapse. Starting from the barotropic Smoluchowski-Poisson system, we derive a new equation describing the evolution of the density contrast in the comoving (collapsing) frame. This equation can serve as a prototype to study the process of self-organization in complex media with structureless initial conditions. We solve this equation analytically in the linear regime and compare the results with those obtained by using the "Jeans swindle" in a static medium. The stability criteria, as well as the laws for the time evolution of the perturbations, are different. The Jeans criterion is expressed in terms of a critical wavelength λJ\lambda_J while our criterion is expressed in terms of a critical polytropic index γ4/3\gamma_{4/3}. We also study the fragmentation process in the nonlinear regime. We determine the growth of the skewness, the long-wavelength tail of the power spectrum and find a self-similar solution to the nonlinear equations valid for large times. Finally, we consider dissipative self-gravitating Bose-Einstein condensates with short-range interactions and show that, in a strong friction limit, the dissipative Gross-Pitaevskii-Poisson system is equivalent to the quantum barotropic Smoluchowski-Poisson system. This yields a new type of nonlinear mean field Fokker-Planck equations including quantum effects

    Angular Momentum and Vortex Formation in Bose-Einstein-Condensed Cold Dark Matter Haloes

    Full text link
    (Abridged) Extensions of the standard model of particle physics predict very light bosons, ranging from about 10^{-5} eV for the QCD axion to 10^{-33} eV for ultra-light particles, which could be the cold dark matter (CDM) in the Universe. If so, their phase-space density must be high enough to form a Bose-Einstein condensate (BEC). The fluid-like nature of BEC-CDM dynamics differs from that of standard collisionless CDM (sCDM), so observations of galactic haloes may distinguish them. sCDM has problems with galaxy observations on small scales, which BEC-CDM may overcome for a large range of particle mass m and self-interaction strength g. For quantum-coherence on galactic scales of radius R and mass M, either the de-Broglie wavelength lambda_deB ~ m_H \cong 10^{-25}(R/100 kpc)^{-1/2}(M/10^{12} M_solar)^{-1/2} eV, or else lambda_deB << R but self-interaction balances gravity, requiring m >> m_H and g >> g_H \cong 2 x 10^{-64} (R/100 kpc)(M/10^{12} M_solar)^{-1} eV cm^3. Here we study the largely-neglected effects of angular momentum. Spin parameters lambda \cong 0.05 are expected from tidal-torquing by large-scale structure, just as for sCDM. Since lab BECs develop quantum vortices if rotated rapidly enough, we ask if this angular momentum is sufficient to form vortices in BEC haloes, affecting their structure with potentially observable consequences. The minimum angular momentum for this, L_{QM} = M/m\hbar M/m, requires m >= 9.5 m_H for lambda = 0.05, close to the particle mass required to influence structure on galactic scales. We study the equilibrium of self-gravitating, rotating BEC haloes which satisfy the Gross-Pitaevskii-Poisson equations, to calculate if and when vortices are energetically favoured. Vortices form as long as self-interaction is strong enough, which includes a large part of the range of m and g of interest for BEC-CDM haloes.Comment: Several typos and numerical typos (incl. in Fig.6, Table 2 and Table 3) have been corrected and references have been updated after proof-reading stage; MNRAS in press; 29 pages; 11 figure

    Boson Stars: Alternatives to primordial black holes?

    Get PDF
    The present surge for the astrophysical relevance of boson stars stems from the speculative possibility that these compact objects could provide a considerable fraction of the non-baryonic part of dark matter within the halo of galaxies. For a very light `universal' axion of effective string models, their total gravitational mass will be in the most likely range of \sim 0.5 M_\odot of MACHOs. According to this framework, gravitational microlensing is indirectly ``weighing" the axion mass, resulting in \sim 10^{-10} eV/c^2. This conclusion is not changing much, if we use a dilaton type self-interaction for the bosons. Moreover, we review their formation, rotation and stability as likely candidates of astrophysical importance.Comment: 14 pages, uses REVTeX, 1 postscript figur
    corecore