225,303 research outputs found
Progress in the use of adeno-associated viral vectors for gene therapy
The development of safe and efficient gene transfer vectors is crucial for the success of gene therapy trials. A viral vector system promising to meet these requirements is based on the apathogenic adeno-associated virus (AAV-2), a member of the parvovirus family. The advantages of this vector system is the stability of the viral capsid, the low immunogenicity, the ability to transduce both dividing and non-dividing cells, the potential to integrate site specifically and to achieve long-term gene expression even in vivo, and its broad tropism allowing the efficient transduction of diverse organs including the skin. All this makes AAV-2 attractive and efficient for in vitro gene transfer and local injection in vivo. This review covers the progress made in AAV vector technology including the development of AAV vectors based on other serotypes, summarizes the results obtained by AAV targeting vectors and outlines potential applications in the field of cutaneous gene therapy. Copyright (C) 2004 S. Karger AG, Basel
Viral Hybrid Vectors for Somatic Integration - Are They the Better Solution?
The turbulent history of clinical trials in viral gene therapy has taught us important lessons about vector design and safety issues. Much effort was spent on analyzing genotoxicity after somatic integration of therapeutic DNA into the host genome. Based on these findings major improvements in vector design including the development of viral hybrid vectors for somatic integration have been achieved. This review provides a state-of-the-art overview of available hybrid vectors utilizing viruses for high transduction efficiencies in concert with various integration machineries for random and targeted integration patterns. It discusses advantages but also limitations of each vector system
Pan-European Chikungunya surveillance: Designing risk stratified surveillance zones
This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2009 Tilston et alThe first documented transmission of Chikungunya within Europe took place in Italy during the summer of 2007. Chikungunya, a viral infection affecting millions of people across Africa and Asia, can be debilitating and no prophylactic treatment exists. Although imported cases are reported frequently across Europe, 2007 was the first confirmed European outbreak and available evidence suggests that Aedes albopictus was the vector responsible and the index case was a visitor from India. This paper proposed pan-European surveillance zones for Chikungunya, based on the climatic conditions necessary for vector activity and viral transmission. Pan-European surveillance provides the best hope for an early-warning of outbreaks, because national boundaries do not play a role in defining the risk of this new vector borne disease threat. A review of climates, where Chikungunya has been active, was used to inform the delineation of three pan-European surveillance zones. These vary in size each month across the June-September period of greatest risk. The zones stretch across southern Europe from Portugal to Turkey. Although the focus of this study was to define the geography of potential surveillance zones based on the climatic limits on the vector and virus, a preliminary examination of inward bound airline passengers was also undertaken. This indicated that France and Italy are likely to be at greater risk due to the number of visitors they receive from Chikungunya active regions, principally viraemic visitors from India. Therefore this study represents a first attempt at creating risk stratified surveillance zones, which we believe could be usefully refined with the use of higher resolution climate data and more complete air travel data
Use of integrase-minus lentiviral vector for transient expression
Objective: Lentivirus-derived vectors are among the most promising viral vectors for gene therapy which is currently available, but their use in clinical practice is limited due to associated risk of insertional mutagenesis. Gene targeting is an ideal method for gene therapy, but it has low efficiency in comparison to viral vector methods. In this study, we are going to design and construct an integrase-minus lentiviral vector. This vector is suitable for transient expression of gene and gene targeting with viral vector. Materials and Methods: In this experimental study, three missense mutations were induced in the catalytic domain of Integrase gene in the pLP1 plasmid and resulted D64V, D116A and E152G changes in the amino acid sequence through site directed mutagenesis. The pLenti6.2-GW/EmGFP transfer vector, associated with native and mutated packaging mix, was transfected into 293T cell line. In order to titer the lentivirus stock, the viruses were harvested. Finally, the viruses transduced into COS-7 cell line to assess green fluorescent protein (GFP) gene expression by a fluorescence microscopy. Results: Recombinant and wild lentiviruses titer was about 5�8�10 6 transducing units/ ml in COS-7 cell line. The number of GFP-positive cells transduced with native viruses was decreased slightly during two weeks after viral transduction. In contrast, in the case of integrase-minus viruses, a dramatic decrease in the number of GFP positive cells was observed. Conclusion: This study was conducted to overcome the integration of lentiviral genome into a host genome. Nonintegrating lentiviral vectors can be used for transient gene expression and gene targeting if a Target gene cassette is placed in the lentivirus gene structure. This combination method decreases disadvantages of both processes, such as random integration of lentiviruses and low efficiency of gene targeting
Culex tarsalis is a competent vector species for Cache Valley virus
Background: Cache Valley virus (CVV) is a mosquito-borne orthobunyavirus endemic in North America. The virus is
an important agricultural pathogen leading to abortion and embryonic lethality in ruminant species, especially
sheep. The importance of CVV in human public health has recently increased because of the report of severe
neurotropic diseases. However, mosquito species responsible for transmission of the virus to humans remain to be
determined. In this study, vector competence of three Culex species mosquitoes of public health importance, Culex
pipiens, Cx. tarsalis and Cx. quinquefasciatus, was determined in order to identify potential bridge vector species
responsible for the transmission of CVV from viremic vertebrate hosts to humans.
Results: Variation of susceptibility to CVV was observed among selected Culex species mosquitoes tested in this
study. Per os infection resulted in the establishment of infection and dissemination in Culex tarsalis, whereas Cx.
pipiens and Cx. quinquefasciatus were highly refractory to CVV. Detection of viral RNA in saliva collected from
infected Cx. tarsalis provided evidence supporting its role as a competent vector.
Conclusions: Our study provided further understanding of the transmission cycles of CVV and identifies Cx. tarsalis
as a competent vector
Transcriptomic analysis of the interaction geminivirus-tomato
Geminiviridae family is one of the main families of plant pathogenic viruses with large relevance as they cause great losses worldwide in commercial crops and crops destined to food production. Geminiviruses present a little single-stranded DNA genome and a capsid composed of two twin icosahedral parts. Tomato Yellow Leaf Curl Virus (TYLCV) belongs to the Begomovirus genus and is transmitted by the whitefly Bemisia tabaci. With only 6 viral proteins, this geminivirus must create a proper environment for viral replication, transcription and propagation. Behind the apparent simplicity of geminiviruses lies a complex network of molecular interactions with their host and even their natural vector, which induces a wide variety of transcriptional, post-transcriptional and chromatinic changes in both the plant and the geminivirus. In order to study these changes and decipher the effects of the transmission vector on the infection, we carried out a global approximation of the TYLCV-tomato interaction to generate integrated single-base resolution maps by NGS (next-generation sequencing) of the transcriptome, smallRNAome and methylome of the pathogen and the host.
Tomato plants (Moneymaker) were infected with TYLCV under controlled conditions of light and temperature using Agrobacterium tumefaciens or its natural vector. Apical tissue from these plants was collected at different time points (2, 7, 14 and 21 days after inoculation), and three biological replicas were generated for each treatment and time. Total RNA and DNA was extracted and analysed by RNA-Seq, smallRNA-Seq and Bisulfite-Seq. The transcriptome of the tomato-TYLCV interaction will be presented and discussed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec
Viral vector-based influenza vaccines
Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors
Murine leukemia virus (MLV) replication monitored with fluorescent proteins
Background: Cancer gene therapy will benefit from vectors that are able to replicate in tumor tissue and cause a bystander effect. Replication-competent murine leukemia virus (MLV) has been described to have potential as cancer therapeutics, however, MLV infection does not cause a cytopathic effect in the infected cell and viral replication can only be studied by immunostaining or measurement of reverse transcriptase activity. Results: We inserted the coding sequences for green fluorescent protein (GFP) into the proline-rich region (PRR) of the ecotropic envelope protein (Env) and were able to fluorescently label MLV. This allowed us to directly monitor viral replication and attachment to target cells by flow cytometry. We used this method to study viral replication of recombinant MLVs and split viral genomes, which were generated by replacement of the MLV env gene with the red fluorescent protein (RFP) and separately cloning GFP-Env into a retroviral vector. Co-transfection of both plasmids into target cells resulted in the generation of semi-replicative vectors, and the two color labeling allowed to determine the distribution of the individual genomes in the target cells and was indicative for the occurrence of recombination events. Conclusions: Fluorescently labeled MLVs are excellent tools for the study of factors that influence viral replication and can be used to optimize MLV-based replication-competent viruses or vectors for gene therapy
The human ankyrin 1 promoter insulator sustains gene expression in a β-globin lentiviral vector in hematopoietic stem cells.
Lentiviral vectors designed for the treatment of the hemoglobinopathies require the inclusion of regulatory and strong enhancer elements to achieve sufficient expression of the β-globin transgene. Despite the inclusion of these elements, the efficacy of these vectors may be limited by transgene silencing due to the genomic environment surrounding the integration site. Barrier insulators can be used to give more consistent expression and resist silencing even with lower vector copies. Here, the barrier activity of an insulator element from the human ankyrin-1 gene was analyzed in a lentiviral vector carrying an antisickling human β-globin gene. Inclusion of a single copy of the Ankyrin insulator did not affect viral titer, and improved the consistency of expression from the vector in murine erythroleukemia cells. The presence of the Ankyrin insulator element did not change transgene expression in human hematopoietic cells in short-term erythroid culture or in vivo in primary murine transplants. However, analysis in secondary recipients showed that the lentiviral vector with the Ankyrin element preserved transgene expression, whereas expression from the vector lacking the Ankyrin insulator decreased in secondary recipients. These studies demonstrate that the Ankyrin insulator may improve long-term β-globin expression in hematopoietic stem cells for gene therapy of hemoglobinopathies
Incorporation of aptamers in the terminal loop of shRNAs yields an effective and novel combinatorial targeting strategy.
Gene therapy by engineering patient's own blood cells to confer HIV resistance can potentially lead to a functional cure for AIDS. Toward this goal, we have previously developed an anti-HIV lentivirus vector that deploys a combination of shRNA, ribozyme and RNA decoy. To further improve this therapeutic vector against viral escape, we sought an additional reagent to target HIV integrase. Here, we report the development of a new strategy for selection and expression of aptamer for gene therapy. We developed a SELEX protocol (multi-tag SELEX) for selecting RNA aptamers against proteins with low solubility or stability, such as integrase. More importantly, we expressed these aptamers in vivo by incorporating them in the terminal loop of shRNAs. This novel strategy allowed efficient expression of the shRNA-aptamer fusions that targeted RNAs and proteins simultaneously. Expressed shRNA-aptamer fusions targeting HIV integrase or reverse transcriptase inhibited HIV replication in cell cultures. Viral inhibition was further enhanced by combining an anti-integrase aptamer with an anti-HIV Tat-Rev shRNA. This construct exhibited efficacy comparable to that of integrase inhibitor Raltegravir. Our strategy for the selection and expression of RNA aptamers can potentially extend to other gene therapy applications
- …
