202,663 research outputs found

    Viral pneumonia in adults and older children in sub-Saharan Africa — epidemiology, aetiology, diagnosis and management

    Get PDF
    Community-acquired pneumonia causes substantial morbidity and mortality in sub-Saharan Africa with an estimated 131 million new cases each year. Viruses — such as influenza virus, respiratory syncytial virus and parainfluenza virus — are now recognised as important causes of respiratory disease in older children and adults in the developed world following the emergence of sensitive molecular diagnostic tests, recent severe viral epidemics, and the discovery of novel viruses. Few studies have comprehensively evaluated the viral aetiology of adult pneumonia in Africa, but it is likely to differ from Western settings due to varying seasonality and the high proportion of patients with immunosuppression and co-morbidities. Emerging data suggest a high prevalence of viral pathogens, as well as multiple viral and viral/bacterial infections in African adults with pneumonia. However, the interpretation of positive results from highly sensitive polymerase chain reaction tests can be challenging. Therapeutic and preventative options against viral respiratory infections are currently limited in the African setting. This review summarises the current state of the epidemiology, aetiology, diagnosis and management of viral pneumonia in sub-Saharan Africa

    TIGIT Marks Exhausted T Cells, Correlates with Disease Progression, and Serves as a Target for Immune Restoration in HIV and SIV Infection.

    Get PDF
    HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion

    Prediction and prevention of the next pandemic zoonosis.

    Get PDF
    Most pandemics--eg, HIV/AIDS, severe acute respiratory syndrome, pandemic influenza--originate in animals, are caused by viruses, and are driven to emerge by ecological, behavioural, or socioeconomic changes. Despite their substantial effects on global public health and growing understanding of the process by which they emerge, no pandemic has been predicted before infecting human beings. We review what is known about the pathogens that emerge, the hosts that they originate in, and the factors that drive their emergence. We discuss challenges to their control and new efforts to predict pandemics, target surveillance to the most crucial interfaces, and identify prevention strategies. New mathematical modelling, diagnostic, communications, and informatics technologies can identify and report hitherto unknown microbes in other species, and thus new risk assessment approaches are needed to identify microbes most likely to cause human disease. We lay out a series of research and surveillance opportunities and goals that could help to overcome these challenges and move the global pandemic strategy from response to pre-emption

    Tissue Tropism in Host Transcriptional Response to Members of the Bovine Respiratory Disease Complex.

    Get PDF
    Bovine respiratory disease (BRD) is the most common infectious disease of beef and dairy cattle and is characterized by a complex infectious etiology that includes a variety of viral and bacterial pathogens. We examined the global changes in mRNA abundance in healthy lung and lung lesions and in the lymphoid tissues bronchial lymph node, retropharyngeal lymph node, nasopharyngeal lymph node and pharyngeal tonsil collected at the peak of clinical disease from beef cattle experimentally challenged with either bovine respiratory syncytial virus, infectious bovine rhinotracheitis, bovine viral diarrhea virus, Mannheimia haemolytica or Mycoplasma bovis. We identified signatures of tissue-specific transcriptional responses indicative of tropism in the coordination of host's immune tissue responses to infection by viral or bacterial infections. Furthermore, our study shows that this tissue tropism in host transcriptional response to BRD pathogens results in the activation of different networks of response genes. The differential crosstalk among genes expressed in lymphoid tissues was predicted to be orchestrated by specific immune genes that act as 'key players' within expression networks. The results of this study serve as a basis for the development of innovative therapeutic strategies and for the selection of cattle with enhanced resistance to BRD

    A novel mechanism of RNase L inhibition: Theiler\u27s virus L* protein prevents 2-5A from binding to RNase L

    Get PDF
    <div><p>The OAS/RNase L pathway is one of the best-characterized effector pathways of the IFN antiviral response. It inhibits the replication of many viruses and ultimately promotes apoptosis of infected cells, contributing to the control of virus spread. However, viruses have evolved a range of escape strategies that act against different steps in the pathway. Here we unraveled a novel escape strategy involving Theiler’s murine encephalomyelitis virus (TMEV) L* protein. Previously we found that L* was the first viral protein binding directly RNase L. Our current data show that L* binds the ankyrin repeats R1 and R2 of RNase L and inhibits 2’-5’ oligoadenylates (2-5A) binding to RNase L. Thereby, L* prevents dimerization and oligomerization of RNase L in response to 2-5A. Using chimeric mouse hepatitis virus (MHV) expressing TMEV L*, we showed that L* efficiently inhibits RNase L <i>in vivo</i>. Interestingly, those data show that L* can functionally substitute for the MHV-encoded phosphodiesterase ns2, which acts upstream of L* in the OAS/RNase L pathway, by degrading 2-5A.</p></div

    Cetacean Host-Pathogen Interaction(s): Critical Knowledge Gaps

    Get PDF
    Within the broad range of viral and non-viral pathogens infecting cetaceans, Cetacean Morbillivirus (CeMV), Herpesvirus (HV), Brucella ceti, and Toxoplasma gondii are of special concern, due to their impact(s) on the health and conservation of free-ranging cetacean populations worldwide (1). The most \u201cparadigmatic\u201d example in this direction is represented by CeMV, which throughout the last 3 decades has caused more than 10 mass mortality outbreaks among different cetacean species and populations across the globe (2, 3)

    The SARS-coronavirus-host interactome

    Get PDF
    Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock
    corecore