20,145 research outputs found

    Detecting violent and abnormal crowd activity using temporal analysis of grey level co-occurrence matrix (GLCM)-based texture measures

    Get PDF
    The severity of sustained injury resulting from assault-related violence can be minimized by reducing detection time. However, it has been shown that human operators perform poorly at detecting events found in video footage when presented with simultaneous feeds. We utilize computer vision techniques to develop an automated method of violence detection that can aid a human operator. We observed that violence in city centre environments often occur in crowded areas, resulting in individual actions being occluded by other crowd members. Measures of visual texture have shown to be effective at encoding crowd appearance. Therefore, we propose modelling crowd dynamics using changes in crowd texture. We refer to this approach as Violent Crowd Texture (VCT). Real-world surveillance footage of night time environments and the violent flows dataset were tested using a random forest classifier to evaluate the ability of the VCT method at discriminating between violent and non-violent behaviour. Our method achieves ROC values of 0.98 and 0.91 on our own real world CCTV dataset and the violent flows dataset respectively

    Visualizing the Motion Flow of Crowds

    Get PDF
    In modern cities, massive population causes problems, like congestion, accident, violence and crime everywhere. Video surveillance system such as closed-circuit television cameras is widely used by security guards to monitor human behaviors and activities to manage, direct, or protect people. With the quantity and prolonged duration of the recorded videos, it requires a huge amount of human resources to examine these video recordings and keep track of activities and events. In recent years, new techniques in computer vision field reduce the barrier of entry, allowing developers to experiment more with intelligent surveillance video system. Different from previous research, this dissertation does not address any algorithm design concerns related to object detection or object tracking. This study will put efforts on the technological side and executing methodologies in data visualization to find the model of detecting anomalies. It would like to provide an understanding of how to detect the behavior of the pedestrians in the video and find out anomalies or abnormal cases by using techniques of data visualization

    Learning to Detect Violent Videos using Convolutional Long Short-Term Memory

    Full text link
    Developing a technique for the automatic analysis of surveillance videos in order to identify the presence of violence is of broad interest. In this work, we propose a deep neural network for the purpose of recognizing violent videos. A convolutional neural network is used to extract frame level features from a video. The frame level features are then aggregated using a variant of the long short term memory that uses convolutional gates. The convolutional neural network along with the convolutional long short term memory is capable of capturing localized spatio-temporal features which enables the analysis of local motion taking place in the video. We also propose to use adjacent frame differences as the input to the model thereby forcing it to encode the changes occurring in the video. The performance of the proposed feature extraction pipeline is evaluated on three standard benchmark datasets in terms of recognition accuracy. Comparison of the results obtained with the state of the art techniques revealed the promising capability of the proposed method in recognizing violent videos.Comment: Accepted in International Conference on Advanced Video and Signal based Surveillance(AVSS 2017

    Fast Fight Detection

    Get PDF
    Action recognition has become a hot topic within computer vision. However, the action recognition community has focused mainly on relatively simple actions like clapping, walking, jogging, etc. The detection of specific events with direct practical use such as fights or in general aggressive behavior has been comparatively less studied. Such capability may be extremely useful in some video surveillance scenarios like prisons, psychiatric centers or even embedded in camera phones. As a consequence, there is growing interest in developing violence detection algorithms. Recent work considered the well-known Bag-of-Words framework for the specific problem of fight detection. Under this framework, spatio-temporal features are extracted from the video sequences and used for classification. Despite encouraging results in which high accuracy rates were achieved, the computational cost of extracting such features is prohibitive for practical applications. This work proposes a novel method to detect violence sequences. Features extracted from motion blobs are used to discriminate fight and non-fight sequences. Although the method is outperformed in accuracy by state of the art, it has a significantly faster computation time thus making it amenable for real-time applications
    • …
    corecore