42 research outputs found

    Articulated human tracking and behavioural analysis in video sequences

    Get PDF
    Recently, there has been a dramatic growth of interest in the observation and tracking of human subjects through video sequences. Arguably, the principal impetus has come from the perceived demand for technological surveillance, however applications in entertainment, intelligent domiciles and medicine are also increasing. This thesis examines human articulated tracking and the classi cation of human movement, rst separately and then as a sequential process. First, this thesis considers the development and training of a 3D model of human body structure and dynamics. To process video sequences, an observation model is also designed with a multi-component likelihood based on edge, silhouette and colour. This is de ned on the articulated limbs, and visible from a single or multiple cameras, each of which may be calibrated from that sequence. Second, for behavioural analysis, we develop a methodology in which actions and activities are described by semantic labels generated from a Movement Cluster Model (MCM). Third, a Hierarchical Partitioned Particle Filter (HPPF) was developed for human tracking that allows multi-level parameter search consistent with the body structure. This tracker relies on the articulated motion prediction provided by the MCM at pose or limb level. Fourth, tracking and movement analysis are integrated to generate a probabilistic activity description with action labels. The implemented algorithms for tracking and behavioural analysis are tested extensively and independently against ground truth on human tracking and surveillance datasets. Dynamic models are shown to predict and generate synthetic motion, while MCM recovers both periodic and non-periodic activities, de ned either on the whole body or at the limb level. Tracking results are comparable with the state of the art, however the integrated behaviour analysis adds to the value of the approach.Overseas Research Students Awards Scheme (ORSAS

    Vision-based techniques for gait recognition

    Full text link
    Global security concerns have raised a proliferation of video surveillance devices. Intelligent surveillance systems seek to discover possible threats automatically and raise alerts. Being able to identify the surveyed object can help determine its threat level. The current generation of devices provide digital video data to be analysed for time varying features to assist in the identification process. Commonly, people queue up to access a facility and approach a video camera in full frontal view. In this environment, a variety of biometrics are available - for example, gait which includes temporal features like stride period. Gait can be measured unobtrusively at a distance. The video data will also include face features, which are short-range biometrics. In this way, one can combine biometrics naturally using one set of data. In this paper we survey current techniques of gait recognition and modelling with the environment in which the research was conducted. We also discuss in detail the issues arising from deriving gait data, such as perspective and occlusion effects, together with the associated computer vision challenges of reliable tracking of human movement. Then, after highlighting these issues and challenges related to gait processing, we proceed to discuss the frameworks combining gait with other biometrics. We then provide motivations for a novel paradigm in biometrics-based human recognition, i.e. the use of the fronto-normal view of gait as a far-range biometrics combined with biometrics operating at a near distance

    Advances in Monocular Exemplar-based Human Body Pose Analysis: Modeling, Detection and Tracking

    Get PDF
    Esta tesis contribuye en el análisis de la postura del cuerpo humano a partir de secuencias de imágenes adquiridas con una sola cámara. Esta temática presenta un amplio rango de potenciales aplicaciones en video-vigilancia, video-juegos o aplicaciones biomédicas. Las técnicas basadas en patrones han tenido éxito, sin embargo, su precisión depende de la similitud del punto de vista de la cámara y de las propiedades de la escena entre las imágenes de entrenamiento y las de prueba. Teniendo en cuenta un conjunto de datos de entrenamiento capturado mediante un número reducido de cámaras fijas, paralelas al suelo, se han identificado y analizado tres escenarios posibles con creciente nivel de dificultad: 1) una cámara estática paralela al suelo, 2) una cámara de vigilancia fija con un ángulo de visión considerablemente diferente, y 3) una secuencia de video capturada con una cámara en movimiento o simplemente una sola imagen estática

    Vision based system for detecting and counting mobility aids in surveillance videos

    Get PDF
    Automatic surveillance video analysis is popular among computer vision researchers due to its wide range of applications that require automated systems. Automated systems are to replace manual analysis of videos which is tiresome, expensive, and time-consuming. Image and video processing techniques are often used in the design of automatic detection and monitoring systems. Compared with normal indoor videos, outdoor surveillance videos are often difficult to process due to the uncontrolled environment, camera angle, and varying lighting and weather conditions. This research aims to contribute to the computer vision field by proposing an object detection and tracking algorithm that can handle multi-object and multi-class scenarios. The problem is solved by developing an application to count disabled pedestrians in surveillance videos by automatically detecting and tracking mobility aids and pedestrians. The application demonstrates that the proposed ideas achieve the desired outcomes. There are extensive studies on pedestrian detection and gait analysis in the computer vision field, but limited work is carried out on identifying disabled pedestrians or mobility aids. Detection of mobility aids in videos is challenging since the disabled person often occludes mobility aids and visibility of mobility aid depends on the direction of the walk with respect to the camera. For example, a walking stick is visible most times in front-on view while it is occluded when it happens to be on the walker's rear side. Furthermore, people use various mobility aids and their make and type changes with time as technology advances. The system should detect the majority of mobility aids to report reliable counting data. The literature review revealed that no system exists for detecting disabled pedestrians or mobility aids in surveillance videos. A lack of annotated image data containing mobility aids is also an obstacle to developing a machine-learning-based solution to detect mobility aids. In the first part of this thesis, we explored moving pedestrians' video data to extract the gait signals using manual and automated procedures. Manual extraction involved marking the pedestrians' head and leg locations and analysing those signals in the time domain. Analysis of stride length and velocity features indicate an abnormality if a walker is physically disabled. The automated system is built by combining the \acrshort{yolo} object detector, GMM based foreground modelling and star skeletonisation in a pipeline to extract the gait signal. The automated system failed to recognise a disabled person from its gait due to poor localisation by \acrshort{yolo}, incorrect segmentation and silhouette extraction due to moving backgrounds and shadows. The automated gait analysis approach failed due to various factors including environmental constraints, viewing angle, occlusions, shadows, imperfections in foreground modelling, object segmentation and silhouette extraction. In the later part of this thesis, we developed a CNN based approach to detect mobility aids and pedestrians. The task of identifying and counting disabled pedestrians in surveillance videos is divided into three sub-tasks: mobility aid and person detection, tracking and data association of detected objects, and counting healthy and disabled pedestrians. A modern object detector called YOLO, an improved data association algorithm (SORT), and a new pairing approach are applied to complete the three sub-tasks. Improvement of the SORT algorithm and introducing a pairing approach are notable contributions to the computer vision field. The SORT algorithm is strictly one class and without an object counting feature. SORT is enhanced to be multi-class and able to track accelerating or temporarily occluded objects. The pairing strategy associates a mobility aid with the nearest pedestrian and monitors them over time to see if the pair is reliable. A reliable pair represents a disabled pedestrian and counting reliable pairs calculates the number of disabled people in the video. The thesis also introduces an image database that was gathered as part of this study. The dataset comprises 5819 images belonging to eight different object classes, including five mobility aids, pedestrians, cars, and bicycles. The dataset was needed to train a CNN that can detect mobility aids in videos. The proposed mobility aid counting system is evaluated on a range of surveillance videos collected from outdoors with real-world scenarios. The results prove that the proposed solution offers a satisfactory performance in picking mobility aids from outdoor surveillance videos. The counting accuracy of 94% on test videos meets the design goals set by the advocacy group that need this application. Most test videos had objects from multiple classes in them. The system detected five mobility aids (wheelchair, crutch, walking stick, walking frame and mobility scooter), pedestrians and two distractors (car and bicycle). The training system on distractors' classes was to ensure the system can distinguish objects that are similar to mobility aids from mobility aids. In some cases, the convolutional neural network reports a mobility aid with an incorrect type. For example, the shape of crutch and stick are very much alike, and therefore, the system confuses one with the other. However, it does not affect the final counts as the aim was to get the overall counts of mobility aids (of any type) and determining the exact type of mobility aid is optional

    Automatic visual detection of human behavior: a review from 2000 to 2014

    Get PDF
    Due to advances in information technology (e.g., digital video cameras, ubiquitous sensors), the automatic detection of human behaviors from video is a very recent research topic. In this paper, we perform a systematic and recent literature review on this topic, from 2000 to 2014, covering a selection of 193 papers that were searched from six major scientific publishers. The selected papers were classified into three main subjects: detection techniques, datasets and applications. The detection techniques were divided into four categories (initialization, tracking, pose estimation and recognition). The list of datasets includes eight examples (e.g., Hollywood action). Finally, several application areas were identified, including human detection, abnormal activity detection, action recognition, player modeling and pedestrian detection. Our analysis provides a road map to guide future research for designing automatic visual human behavior detection systems.This work is funded by the Portuguese Foundation for Science and Technology (FCT - Fundacao para a Ciencia e a Tecnologia) under research Grant SFRH/BD/84939/2012

    Spatiotemporal visual analysis of human actions

    No full text
    In this dissertation we propose four methods for the recognition of human activities. In all four of them, the representation of the activities is based on spatiotemporal features that are automatically detected at areas where there is a significant amount of independent motion, that is, motion that is due to ongoing activities in the scene. We propose the use of spatiotemporal salient points as features throughout this dissertation. The algorithms presented, however, can be used with any kind of features, as long as the latter are well localized and have a well-defined area of support in space and time. We introduce the utilized spatiotemporal salient points in the first method presented in this dissertation. By extending previous work on spatial saliency, we measure the variations in the information content of pixel neighborhoods both in space and time, and detect the points at the locations and scales for which this information content is locally maximized. In this way, an activity is represented as a collection of spatiotemporal salient points. We propose an iterative linear space-time warping technique in order to align the representations in space and time and propose to use Relevance Vector Machines (RVM) in order to classify each example into an action category. In the second method proposed in this dissertation we propose to enhance the acquired representations of the first method. More specifically, we propose to track each detected point in time, and create representations based on sets of trajectories, where each trajectory expresses how the information engulfed by each salient point evolves over time. In order to deal with imperfect localization of the detected points, we augment the observation model of the tracker with background information, acquired using a fully automatic background estimation algorithm. In this way, the tracker favors solutions that contain a large number of foreground pixels. In addition, we perform experiments where the tracked templates are localized on specific parts of the body, like the hands and the head, and we further augment the tracker’s observation model using a human skin color model. Finally, we use a variant of the Longest Common Subsequence algorithm (LCSS) in order to acquire a similarity measure between the resulting trajectory representations, and RVMs for classification. In the third method that we propose, we assume that neighboring salient points follow a similar motion. This is in contrast to the previous method, where each salient point was tracked independently of its neighbors. More specifically, we propose to extract a novel set of visual descriptors that are based on geometrical properties of three-dimensional piece-wise polynomials. The latter are fitted on the spatiotemporal locations of salient points that fall within local spatiotemporal neighborhoods, and are assumed to follow a similar motion. The extracted descriptors are invariant in translation and scaling in space-time. Coupling the neighborhood dimensions to the scale at which the corresponding spatiotemporal salient points are detected ensures the latter. The descriptors that are extracted across the whole dataset are subsequently clustered in order to create a codebook, which is used in order to represent the overall motion of the subjects within small temporal windows.Finally,we use boosting in order to select the most discriminative of these windows for each class, and RVMs for classification. The fourth and last method addresses the joint problem of localization and recognition of human activities depicted in unsegmented image sequences. Its main contribution is the use of an implicit representation of the spatiotemporal shape of the activity, which relies on the spatiotemporal localization of characteristic ensembles of spatiotemporal features. The latter are localized around automatically detected salient points. Evidence for the spatiotemporal localization of the activity is accumulated in a probabilistic spatiotemporal voting scheme. During training, we use boosting in order to create codebooks of characteristic feature ensembles for each class. Subsequently, we construct class-specific spatiotemporal models, which encode where in space and time each codeword ensemble appears in the training set. During testing, each activated codeword ensemble casts probabilistic votes concerning the spatiotemporal localization of the activity, according to the information stored during training. We use a Mean Shift Mode estimation algorithm in order to extract the most probable hypotheses from each resulting voting space. Each hypothesis corresponds to a spatiotemporal volume which potentially engulfs the activity, and is verified by performing action category classification with an RVM classifier

    Vision-Based Observation Models for Lower Limb 3D Tracking with a Moving Platform

    Get PDF
    Tracking and understanding human gait is an important step towards improving elderly mobility and safety. This thesis presents a vision-based tracking system that estimates the 3D pose of a wheeled walker user's lower limbs with cameras mounted on the moving walker. The tracker estimates 3D poses from images of the lower limbs in the coronal plane in a dynamic, uncontrolled environment. It employs a probabilistic approach based on particle filtering with three different camera setups: a monocular RGB camera, binocular RGB cameras, and a depth camera. For the RGB cameras, observation likelihoods are designed to compare the colors and gradients of each frame with initial templates that are manually extracted. Two strategies are also investigated for handling appearance change of tracking target: increasing number of templates and using different representations of colors. For the depth camera, two observation likelihoods are developed: the first one works directly in the 3D space, while the second one works in the projected image space. Experiments are conducted to evaluate the performance of the tracking system with different users for all three camera setups. It is demonstrated that the trackers with the RGB cameras produce results with higher error as compared to the depth camera, and the strategies for handling appearance change improve tracking accuracy in general. On the other hand, the tracker with the depth sensor successfully tracks the 3D poses of users over the entire video sequence and is robust against unfavorable conditions such as partial occlusion, missing observations, and deformable tracking target
    corecore