308 research outputs found

    Perceived Video Quality Estimation from Spatial and Temporal Information Contents and Network Performance Parameters in IPTV

    Get PDF
    The paper proposes a model for estimation of perceived video quality in IPTV, taking as input both video coding and network Quality of Service parameters. It includes some fitting parameters that depend mainly on the information contents of the video sequences. A method to derive them from the Spatial and Temporal Information contents of the sequences is proposed. The model may be used for near real-time monitoring of IPTV video quality

    Real-time low-complexity digital video stabilization in the compressed domain

    Get PDF

    Measuring And Improving Internet Video Quality Of Experience

    Get PDF
    Streaming multimedia content over the IP-network is poised to be the dominant Internet traffic for the coming decade, predicted to account for more than 91% of all consumer traffic in the coming years. Streaming multimedia content ranges from Internet television (IPTV), video on demand (VoD), peer-to-peer streaming, and 3D television over IP to name a few. Widespread acceptance, growth, and subscriber retention are contingent upon network providers assuring superior Quality of Experience (QoE) on top of todays Internet. This work presents the first empirical understanding of Internet’s video-QoE capabilities, and tools and protocols to efficiently infer and improve them. To infer video-QoE at arbitrary nodes in the Internet, we design and implement MintMOS: a lightweight, real-time, noreference framework for capturing perceptual quality. We demonstrate that MintMOS’s projections closely match with subjective surveys in accessing perceptual quality. We use MintMOS to characterize Internet video-QoE both at the link level and end-to-end path level. As an input to our study, we use extensive measurements from a large number of Internet paths obtained from various measurement overlays deployed using PlanetLab. Link level degradations of intra– and inter–ISP Internet links are studied to create an empirical understanding of their shortcomings and ways to overcome them. Our studies show that intra–ISP links are often poorly engineered compared to peering links, and that iii degradations are induced due to transient network load imbalance within an ISP. Initial results also indicate that overlay networks could be a promising way to avoid such ISPs in times of degradations. A large number of end-to-end Internet paths are probed and we measure delay, jitter, and loss rates. The measurement data is analyzed offline to identify ways to enable a source to select alternate paths in an overlay network to improve video-QoE, without the need for background monitoring or apriori knowledge of path characteristics. We establish that for any unstructured overlay of N nodes, it is sufficient to reroute key frames using a random subset of k nodes in the overlay, where k is bounded by O(lnN). We analyze various properties of such random subsets to derive simple, scalable, and an efficient path selection strategy that results in a k-fold increase in path options for any source-destination pair; options that consistently outperform Internet path selection. Finally, we design a prototype called source initiated frame restoration (SIFR) that employs random subsets to derive alternate paths and demonstrate its effectiveness in improving Internet video-QoE

    Using Code Perforation to Improve Performance, Reduce Energy Consumption, and Respond to Failures

    Get PDF
    Many modern computations (such as video and audio encoders, Monte Carlo simulations, and machine learning algorithms) are designed to trade off accuracy in return for increased performance. To date, such computations typically use ad-hoc, domain-specific techniques developed specifically for the computation at hand. We present a new general technique, code perforation, for automatically augmenting existing computations with the capability of trading off accuracy in return for performance. In contrast to existing approaches, which typically require the manual development of new algorithms, our implemented SpeedPress compiler can automatically apply code perforation to existing computations with no developer intervention whatsoever. The result is a transformed computation that can respond almost immediately to a range of increased performancedemands while keeping any resulting output distortion within acceptable user-defined bounds. We have used SpeedPress to automatically apply code perforation to applications from the PARSEC benchmark suite. The results show that the transformed applications can run as much as two to three times faster than the original applications while distorting the output by less than 10%. Because the transformed applications can operate successfully at many points in the performance/accuracy tradeoff space, they can (dynamically and on demand) navigate the tradeoff space to either maximize performance subject to a given accuracy constraint, or maximize accuracy subject to a given performance constraint. We also demonstrate the SpeedGuard runtime system which uses code perforation to enable applications to automatically adapt to challenging execution environments such as multicore machines that suffer core failures or machines that dynamically adjust the clock speed to reduce power consumption or to protect the machine from overheating

    Continuous Human Activity Tracking over a Large Area with Multiple Kinect Sensors

    Get PDF
    In recent years, researchers had been inquisitive about the use of technology to enhance the healthcare and wellness of patients with dementia. Dementia symptoms are associated with the decline in thinking skills and memory severe enough to reduce a person’s ability to pay attention and perform daily activities. Progression of dementia can be assessed by monitoring the daily activities of the patients. This thesis encompasses continuous localization and behavioral analysis of patient’s motion pattern over a wide area indoor living space using multiple calibrated Kinect sensors connected over the network. The skeleton data from all the sensor is transferred to the host computer via TCP sockets into Unity software where it is integrated into a single world coordinate system using calibration technique. Multiple cameras are placed with some overlap in the field of view for the successful calibration of the cameras and continuous tracking of the patients. Localization and behavioral data are stored in a CSV file for further analysis

    On-board multispectral classification study

    Get PDF
    The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground

    Music Augmentation and Denoising For Peak-Based Audio Fingerprinting

    Full text link
    Audio fingerprinting is a well-established solution for song identification from short recording excerpts. Popular methods rely on the extraction of sparse representations, generally spectral peaks, and have proven to be accurate, fast, and scalable to large collections. However, real-world applications of audio identification often happen in noisy environments, which can cause these systems to fail. In this work, we tackle this problem by introducing and releasing a new audio augmentation pipeline that adds noise to music snippets in a realistic way, by stochastically mimicking real-world scenarios. We then propose and release a deep learning model that removes noisy components from spectrograms in order to improve peak-based fingerprinting systems' accuracy. We show that the addition of our model improves the identification performance of commonly used audio fingerprinting systems, even under noisy conditions

    Study of spacecraft direct readout meteorological systems

    Get PDF
    Characteristics are defined of the next generation direct readout meteorological satellite system with particular application to Tiros N. Both space and ground systems are included. The recommended space system is composed of four geosynchronous satellites and two low altitude satellites in sun-synchronous orbit. The goesynchronous satellites transmit to direct readout ground stations via a shared S-band link, relayed FOFAX satellite cloud cover pictures (visible and infrared) and weather charts (WEFAX). Basic sensor data is transmitted to regional Data Utilization Stations via the same S-band link. Basic sensor data consists of 0.5 n.m. sub-point resolution data in the 0.55 - 0.7 micron spectral region, and 4.0 n.m. resolution data in the 10.5 - 12.6 micron spectral region. The two low altitude satellites in sun-synchronous orbit provide data to direct readout ground stations via a 137 MHz link, a 400 Mhz link, and an S-band link

    Haptic holography : an early computational plastic

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2001.Includes bibliographical references (p. 135-148).This dissertation introduces haptic holography, a combination of computational modeling and multimodal spatial display, as an early computationalplastic In this work, we combine various holographic displays with a force feedback device to image free-standing material surfaces with programmatically prescribed behavior. We present three implementations, Touch, Lathe, and Poke, each named for the primitive functional affordance it offers. In Touch, we present static holographic images of simple geometry, reconstructed in front of the hologram plane (in the viewer's space), and precisely co-located with a force model of the same geometry. These images can be visually inspected and haptically explored using a hand-held interface. In Lathe, we again display holo-haptic images of simple geometry, this time allowing those images to be reshaped by haptic interaction in a dynamic but constrained manner. Finally in Poke, we present a holo-haptic image that permits arbitrary reshaping of its reconstructed surface. As supporting technology, we offer a new technique for incrementally computing and locally updating interference-modeled holographic fringe patterns. This technique permits electronic holograms to be updated arbitrarily and interactively, marking a long-held goal in display holography. As a broader contribution, we offer a new behavior-based spatial framework, based on both perception and action, for informing the design of spatial interactive systems.Wendy J. Plesniak.Ph.D
    • …
    corecore