585 research outputs found

    The Visual Centrifuge: Model-Free Layered Video Representations

    Full text link
    True video understanding requires making sense of non-lambertian scenes where the color of light arriving at the camera sensor encodes information about not just the last object it collided with, but about multiple mediums -- colored windows, dirty mirrors, smoke or rain. Layered video representations have the potential of accurately modelling realistic scenes but have so far required stringent assumptions on motion, lighting and shape. Here we propose a learning-based approach for multi-layered video representation: we introduce novel uncertainty-capturing 3D convolutional architectures and train them to separate blended videos. We show that these models then generalize to single videos, where they exhibit interesting abilities: color constancy, factoring out shadows and separating reflections. We present quantitative and qualitative results on real world videos.Comment: Appears in: 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019). This arXiv contains the CVPR Camera Ready version of the paper (although we have included larger figures) as well as an appendix detailing the model architectur

    An Exploration of Style Transfer Using Deep Neural Networks

    Get PDF
    Convolutional Neural Networks and Graphics Processing Units have been at the core of a paradigm shift in computer vision research that some researchers have called `\u27the algorithmic perception revolution. This thesis presents the implementation and analysis of several techniques for performing artistic style transfer using a Convolutional Neural Network architecture trained for large-scale image recognition tasks. We present an implementation of an existing algorithm for artistic style transfer in images and video. The neural algorithm separates and recombines the style and content of arbitrary images. Additionally, we present an extension of the algorithm to perform weighted artistic style transfer

    LAN-HDR: Luminance-based Alignment Network for High Dynamic Range Video Reconstruction

    Full text link
    As demands for high-quality videos continue to rise, high-resolution and high-dynamic range (HDR) imaging techniques are drawing attention. To generate an HDR video from low dynamic range (LDR) images, one of the critical steps is the motion compensation between LDR frames, for which most existing works employed the optical flow algorithm. However, these methods suffer from flow estimation errors when saturation or complicated motions exist. In this paper, we propose an end-to-end HDR video composition framework, which aligns LDR frames in the feature space and then merges aligned features into an HDR frame, without relying on pixel-domain optical flow. Specifically, we propose a luminance-based alignment network for HDR (LAN-HDR) consisting of an alignment module and a hallucination module. The alignment module aligns a frame to the adjacent reference by evaluating luminance-based attention, excluding color information. The hallucination module generates sharp details, especially for washed-out areas due to saturation. The aligned and hallucinated features are then blended adaptively to complement each other. Finally, we merge the features to generate a final HDR frame. In training, we adopt a temporal loss, in addition to frame reconstruction losses, to enhance temporal consistency and thus reduce flickering. Extensive experiments demonstrate that our method performs better or comparable to state-of-the-art methods on several benchmarks.Comment: ICCV 202

    Blind Video Deflickering by Neural Filtering with a Flawed Atlas

    Full text link
    Many videos contain flickering artifacts. Common causes of flicker include video processing algorithms, video generation algorithms, and capturing videos under specific situations. Prior work usually requires specific guidance such as the flickering frequency, manual annotations, or extra consistent videos to remove the flicker. In this work, we propose a general flicker removal framework that only receives a single flickering video as input without additional guidance. Since it is blind to a specific flickering type or guidance, we name this "blind deflickering." The core of our approach is utilizing the neural atlas in cooperation with a neural filtering strategy. The neural atlas is a unified representation for all frames in a video that provides temporal consistency guidance but is flawed in many cases. To this end, a neural network is trained to mimic a filter to learn the consistent features (e.g., color, brightness) and avoid introducing the artifacts in the atlas. To validate our method, we construct a dataset that contains diverse real-world flickering videos. Extensive experiments show that our method achieves satisfying deflickering performance and even outperforms baselines that use extra guidance on a public benchmark.Comment: To appear in CVPR2023. Code: github.com/ChenyangLEI/All-In-One-Deflicker Website: chenyanglei.github.io/deflicke

    NeRSemble: Multi-view Radiance Field Reconstruction of Human Heads

    Full text link
    We focus on reconstructing high-fidelity radiance fields of human heads, capturing their animations over time, and synthesizing re-renderings from novel viewpoints at arbitrary time steps. To this end, we propose a new multi-view capture setup composed of 16 calibrated machine vision cameras that record time-synchronized images at 7.1 MP resolution and 73 frames per second. With our setup, we collect a new dataset of over 4700 high-resolution, high-framerate sequences of more than 220 human heads, from which we introduce a new human head reconstruction benchmark. The recorded sequences cover a wide range of facial dynamics, including head motions, natural expressions, emotions, and spoken language. In order to reconstruct high-fidelity human heads, we propose Dynamic Neural Radiance Fields using Hash Ensembles (NeRSemble). We represent scene dynamics by combining a deformation field and an ensemble of 3D multi-resolution hash encodings. The deformation field allows for precise modeling of simple scene movements, while the ensemble of hash encodings helps to represent complex dynamics. As a result, we obtain radiance field representations of human heads that capture motion over time and facilitate re-rendering of arbitrary novel viewpoints. In a series of experiments, we explore the design choices of our method and demonstrate that our approach outperforms state-of-the-art dynamic radiance field approaches by a significant margin.Comment: Siggraph 2023, Project Page: https://tobias-kirschstein.github.io/nersemble/ , Video: https://youtu.be/a-OAWqBzld
    • …
    corecore