1,515 research outputs found

    Color Image and Multispectral Image Denoising Using Block Diagonal Representation

    Full text link
    Filtering images of more than one channel is challenging in terms of both efficiency and effectiveness. By grouping similar patches to utilize the self-similarity and sparse linear approximation of natural images, recent nonlocal and transform-domain methods have been widely used in color and multispectral image (MSI) denoising. Many related methods focus on the modeling of group level correlation to enhance sparsity, which often resorts to a recursive strategy with a large number of similar patches. The importance of the patch level representation is understated. In this paper, we mainly investigate the influence and potential of representation at patch level by considering a general formulation with block diagonal matrix. We further show that by training a proper global patch basis, along with a local principal component analysis transform in the grouping dimension, a simple transform-threshold-inverse method could produce very competitive results. Fast implementation is also developed to reduce computational complexity. Extensive experiments on both simulated and real datasets demonstrate its robustness, effectiveness and efficiency

    Nonlocal Low-Rank Tensor Factor Analysis for Image Restoration

    Full text link
    Low-rank signal modeling has been widely leveraged to capture non-local correlation in image processing applications. We propose a new method that employs low-rank tensor factor analysis for tensors generated by grouped image patches. The low-rank tensors are fed into the alternative direction multiplier method (ADMM) to further improve image reconstruction. The motivating application is compressive sensing (CS), and a deep convolutional architecture is adopted to approximate the expensive matrix inversion in CS applications. An iterative algorithm based on this low-rank tensor factorization strategy, called NLR-TFA, is presented in detail. Experimental results on noiseless and noisy CS measurements demonstrate the superiority of the proposed approach, especially at low CS sampling rates

    Denoising and Completion of 3D Data via Multidimensional Dictionary Learning

    Full text link
    In this paper a new dictionary learning algorithm for multidimensional data is proposed. Unlike most conventional dictionary learning methods which are derived for dealing with vectors or matrices, our algorithm, named KTSVD, learns a multidimensional dictionary directly via a novel algebraic approach for tensor factorization as proposed in [3, 12, 13]. Using this approach one can define a tensor-SVD and we propose to extend K-SVD algorithm used for 1-D data to a K-TSVD algorithm for handling 2-D and 3-D data. Our algorithm, based on the idea of sparse coding (using group-sparsity over multidimensional coefficient vectors), alternates between estimating a compact representation and dictionary learning. We analyze our KTSVD algorithm and demonstrate its result on video completion and multispectral image denoising.Comment: 9 pages, submitted to Conference on Computer Vision and Pattern Recognition (CVPR) 201

    Panoramic Robust PCA for Foreground-Background Separation on Noisy, Free-Motion Camera Video

    Full text link
    This work presents a new robust PCA method for foreground-background separation on freely moving camera video with possible dense and sparse corruptions. Our proposed method registers the frames of the corrupted video and then encodes the varying perspective arising from camera motion as missing data in a global model. This formulation allows our algorithm to produce a panoramic background component that automatically stitches together corrupted data from partially overlapping frames to reconstruct the full field of view. We model the registered video as the sum of a low-rank component that captures the background, a smooth component that captures the dynamic foreground of the scene, and a sparse component that isolates possible outliers and other sparse corruptions in the video. The low-rank portion of our model is based on a recent low-rank matrix estimator (OptShrink) that has been shown to yield superior low-rank subspace estimates in practice. To estimate the smooth foreground component of our model, we use a weighted total variation framework that enables our method to reliably decouple the true foreground of the video from sparse corruptions. We perform extensive numerical experiments on both static and moving camera video subject to a variety of dense and sparse corruptions. Our experiments demonstrate the state-of-the-art performance of our proposed method compared to existing methods both in terms of foreground and background estimation accuracy.Comment: IEEE TCI. Project webpage: https://gaochen315.github.io/pRPCA/ Code: https://github.com/gaochen315/panoramicRPC

    Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization

    Full text link
    This paper studies the Tensor Robust Principal Component (TRPCA) problem which extends the known Robust PCA (Candes et al. 2011) to the tensor case. Our model is based on a new tensor Singular Value Decomposition (t-SVD) (Kilmer and Martin 2011) and its induced tensor tubal rank and tensor nuclear norm. Consider that we have a 3-way tensor X∈Rn1Γ—n2Γ—n3{\mathcal{X}}\in\mathbb{R}^{n_1\times n_2\times n_3} such that X=L0+E0{\mathcal{X}}={\mathcal{L}}_0+{\mathcal{E}}_0, where L0{\mathcal{L}}_0 has low tubal rank and E0{\mathcal{E}}_0 is sparse. Is that possible to recover both components? In this work, we prove that under certain suitable assumptions, we can recover both the low-rank and the sparse components exactly by simply solving a convex program whose objective is a weighted combination of the tensor nuclear norm and the β„“1\ell_1-norm, i.e., $\min_{{\mathcal{L}},\ {\mathcal{E}}} \ \|{{\mathcal{L}}}\|_*+\lambda\|{{\mathcal{E}}}\|_1, \ \text{s.t.} \ {\mathcal{X}}={\mathcal{L}}+{\mathcal{E}},where, where \lambda= {1}/{\sqrt{\max(n_1,n_2)n_3}}.Interestingly,TRPCAinvolvesRPCAasaspecialcasewhen. Interestingly, TRPCA involves RPCA as a special case when n_3=1$ and thus it is a simple and elegant tensor extension of RPCA. Also numerical experiments verify our theory and the application for the image denoising demonstrates the effectiveness of our method.Comment: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR, 2016

    Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm

    Full text link
    In this paper, we investigate tensor recovery problems within the tensor singular value decomposition (t-SVD) framework. We propose the partial sum of the tubal nuclear norm (PSTNN) of a tensor. The PSTNN is a surrogate of the tensor tubal multi-rank. We build two PSTNN-based minimization models for two typical tensor recovery problems, i.e., the tensor completion and the tensor principal component analysis. We give two algorithms based on the alternating direction method of multipliers (ADMM) to solve proposed PSTNN-based tensor recovery models. Experimental results on the synthetic data and real-world data reveal the superior of the proposed PSTNN

    Tensor train rank minimization with nonlocal self-similarity for tensor completion

    Full text link
    The tensor train (TT) rank has received increasing attention in tensor completion due to its ability to capture the global correlation of high-order tensors (order>3\textrm{order} >3). For third order visual data, direct TT rank minimization has not exploited the potential of TT rank for high-order tensors. The TT rank minimization accompany with \emph{ket augmentation}, which transforms a lower-order tensor (e.g., visual data) into a higher-order tensor, suffers from serious block-artifacts. To tackle this issue, we suggest the TT rank minimization with nonlocal self-similarity for tensor completion by simultaneously exploring the spatial, temporal/spectral, and nonlocal redundancy in visual data. More precisely, the TT rank minimization is performed on a formed higher-order tensor called group by stacking similar cubes, which naturally and fully takes advantage of the ability of TT rank for high-order tensors. Moreover, the perturbation analysis for the TT low-rankness of each group is established. We develop the alternating direction method of multipliers tailored for the specific structure to solve the proposed model. Extensive experiments demonstrate that the proposed method is superior to several existing state-of-the-art methods in terms of both qualitative and quantitative measures

    Tensor completion using enhanced multiple modes low-rank prior and total variation

    Full text link
    In this paper, we propose a novel model to recover a low-rank tensor by simultaneously performing double nuclear norm regularized low-rank matrix factorizations to the all-mode matricizations of the underlying tensor. An block successive upper-bound minimization algorithm is applied to solve the model. Subsequence convergence of our algorithm can be established, and our algorithm converges to the coordinate-wise minimizers in some mild conditions. Several experiments on three types of public data sets show that our algorithm can recover a variety of low-rank tensors from significantly fewer samples than the other testing tensor completion methods

    Augmented Robust PCA For Foreground-Background Separation on Noisy, Moving Camera Video

    Full text link
    This work presents a novel approach for robust PCA with total variation regularization for foreground-background separation and denoising on noisy, moving camera video. Our proposed algorithm registers the raw (possibly corrupted) frames of a video and then jointly processes the registered frames to produce a decomposition of the scene into a low-rank background component that captures the static components of the scene, a smooth foreground component that captures the dynamic components of the scene, and a sparse component that can isolate corruptions and other non-idealities. Unlike existing methods, our proposed algorithm produces a panoramic low-rank component that spans the entire field of view, automatically stitching together corrupted data from partially overlapping scenes. The low-rank portion of our robust PCA model is based on a recently discovered optimal low-rank matrix estimator (OptShrink) that requires no parameter tuning. We demonstrate the performance of our algorithm on both static and moving camera videos corrupted by noise and outliers

    Multilinear Map Layer: Prediction Regularization by Structural Constraint

    Full text link
    In this paper we propose and study a technique to impose structural constraints on the output of a neural network, which can reduce amount of computation and number of parameters besides improving prediction accuracy when the output is known to approximately conform to the low-rankness prior. The technique proceeds by replacing the output layer of neural network with the so-called MLM layers, which forces the output to be the result of some Multilinear Map, like a hybrid-Kronecker-dot product or Kronecker Tensor Product. In particular, given an "autoencoder" model trained on SVHN dataset, we can construct a new model with MLM layer achieving 62\% reduction in total number of parameters and reduction of β„“2\ell_2 reconstruction error from 0.088 to 0.004. Further experiments on other autoencoder model variants trained on SVHN datasets also demonstrate the efficacy of MLM layers
    • …
    corecore