893,692 research outputs found

    FollowMe: Efficient Online Min-Cost Flow Tracking with Bounded Memory and Computation

    Full text link
    One of the most popular approaches to multi-target tracking is tracking-by-detection. Current min-cost flow algorithms which solve the data association problem optimally have three main drawbacks: they are computationally expensive, they assume that the whole video is given as a batch, and they scale badly in memory and computation with the length of the video sequence. In this paper, we address each of these issues, resulting in a computationally and memory-bounded solution. First, we introduce a dynamic version of the successive shortest-path algorithm which solves the data association problem optimally while reusing computation, resulting in significantly faster inference than standard solvers. Second, we address the optimal solution to the data association problem when dealing with an incoming stream of data (i.e., online setting). Finally, we present our main contribution which is an approximate online solution with bounded memory and computation which is capable of handling videos of arbitrarily length while performing tracking in real time. We demonstrate the effectiveness of our algorithms on the KITTI and PETS2009 benchmarks and show state-of-the-art performance, while being significantly faster than existing solvers

    Video analytics system for surveillance videos

    Get PDF
    Developing an intelligent inspection system that can enhance the public safety is challenging. An efficient video analytics system can help monitor unusual events and mitigate possible damage or loss. This thesis aims to analyze surveillance video data, report abnormal activities and retrieve corresponding video clips. The surveillance video dataset used in this thesis is derived from ALERT Dataset, a collection of surveillance videos at airport security checkpoints. The video analytics system in this thesis can be thought as a pipelined process. The system takes the surveillance video as input, and passes it through a series of processing such as object detection, multi-object tracking, person-bin association and re-identification. In the end, we can obtain trajectories of passengers and baggage in the surveillance videos. Abnormal events like taking away other's belongings will be detected and trigger the alarm automatically. The system could also retrieve the corresponding video clips based on user-defined query
    corecore