1,020 research outputs found

    Coding local and global binary visual features extracted from video sequences

    Get PDF
    Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks, while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the Bag-of-Visual-Word (BoVW) model. Several applications, including for example visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget, while attaining a target level of efficiency. In this paper we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can be conveniently adopted to support the Analyze-Then-Compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the Compress-Then-Analyze (CTA) paradigm. In this paper we experimentally compare ATC and CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: homography estimation and content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with CTA, especially in bandwidth limited scenarios.Comment: submitted to IEEE Transactions on Image Processin

    TeViS:Translating Text Synopses to Video Storyboards

    Full text link
    A video storyboard is a roadmap for video creation which consists of shot-by-shot images to visualize key plots in a text synopsis. Creating video storyboards, however, remains challenging which not only requires cross-modal association between high-level texts and images but also demands long-term reasoning to make transitions smooth across shots. In this paper, we propose a new task called Text synopsis to Video Storyboard (TeViS) which aims to retrieve an ordered sequence of images as the video storyboard to visualize the text synopsis. We construct a MovieNet-TeViS dataset based on the public MovieNet dataset. It contains 10K text synopses each paired with keyframes manually selected from corresponding movies by considering both relevance and cinematic coherence. To benchmark the task, we present strong CLIP-based baselines and a novel VQ-Trans. VQ-Trans first encodes text synopsis and images into a joint embedding space and uses vector quantization (VQ) to improve the visual representation. Then, it auto-regressively generates a sequence of visual features for retrieval and ordering. Experimental results demonstrate that VQ-Trans significantly outperforms prior methods and the CLIP-based baselines. Nevertheless, there is still a large gap compared to human performance suggesting room for promising future work. The code and data are available at: \url{https://ruc-aimind.github.io/projects/TeViS/}Comment: Accepted to ACM Multimedia 202

    Efficient and Robust Detection of Duplicate Videos in a Database

    Get PDF
    In this paper, the duplicate detection method is to retrieve the best matching model video for a given query video using fingerprint. We have used the Color Layout Descriptor method and Opponent Color Space to extract feature from frame and perform k-means based clustering to generate fingerprints which are further encoded by Vector Quantization. The model-to-query video distance is computed using a new distance measure to find the similarity. To perform efficient search coarse-to-fine matching scheme is used to retrieve best match. We perform experiments on query videos and real time video with an average duration of 60 sec; the duplicate video is detected with high similarity

    A histogram-based approach for object-based query-by-shape-and-color in image and video databases

    Get PDF
    Cataloged from PDF version of article.Considering the fact that querying by low-level object features is essential in image and video data, an efficient approach for querying and retrieval by shape and color is proposed. The approach employs three specialized histograms, (i.e. distance, angle, and color histograms) to store feature-based information that is extracted from objects. The objects can be extracted from images or video frames. The proposed histogram-based approach is used as a component in the query-by-feature subsystem of a video database management system. The color and shape information is handled together to enrich the querying capabilities for content-based retrieval. The evaluation of the retrieval effectiveness and the robustness of the proposed approach is presented via performance experiments. (C) 2005 Elsevier Ltd All rights reserved

    Analysis of Using Metric Access Methods for Visual Search of Objects in Video Databases

    Get PDF
    This article presents an approach to object retrieval that searches for and localizes all the occurrences of an object in a video database, given a query image of the object. Our proposal is based on text-retrieval methods in which video key frames are represented by a dense set of viewpoint invariant region descriptors that enable recognition to proceed successfully despite changes in camera viewpoint, lighting, and partial occlusions. Vector quantizing these region descriptors provides a visual analogy of a word - a visual word. Those words are grouped into a visual vocabulary which is used to index all key frames from the video database. Efficient retrieval is then achieved by employing methods from statistical text retrieval, including inverted file systems, and text-document frequency weightings. Though works in the literature have only adopted a simple sequential scan during search, we investigate the use of different metric access methods (MAM): M-tree, Slim-tree, and D-index, in order to accelerate the processing of similarity queries. In addition, a ranking strategy based on the spatial layout of the regions (spatial consistency) is fully described and evaluated. Experimental results have shown that the adoption of MAMs not only has improved the search performance but also has reduced the influence of the vocabulary size over test results, which may improve the scalability of our proposal. Finally, the application of spatial consistency has produced a very significant improvement of the results
    corecore