31 research outputs found

    In Defense of Clip-based Video Relation Detection

    Full text link
    Video Visual Relation Detection (VidVRD) aims to detect visual relationship triplets in videos using spatial bounding boxes and temporal boundaries. Existing VidVRD methods can be broadly categorized into bottom-up and top-down paradigms, depending on their approach to classifying relations. Bottom-up methods follow a clip-based approach where they classify relations of short clip tubelet pairs and then merge them into long video relations. On the other hand, top-down methods directly classify long video tubelet pairs. While recent video-based methods utilizing video tubelets have shown promising results, we argue that the effective modeling of spatial and temporal context plays a more significant role than the choice between clip tubelets and video tubelets. This motivates us to revisit the clip-based paradigm and explore the key success factors in VidVRD. In this paper, we propose a Hierarchical Context Model (HCM) that enriches the object-based spatial context and relation-based temporal context based on clips. We demonstrate that using clip tubelets can achieve superior performance compared to most video-based methods. Additionally, using clip tubelets offers more flexibility in model designs and helps alleviate the limitations associated with video tubelets, such as the challenging long-term object tracking problem and the loss of temporal information in long-term tubelet feature compression. Extensive experiments conducted on two challenging VidVRD benchmarks validate that our HCM achieves a new state-of-the-art performance, highlighting the effectiveness of incorporating advanced spatial and temporal context modeling within the clip-based paradigm

    Zero-Shot Visual Recognition using Semantics-Preserving Adversarial Embedding Networks

    Full text link
    We propose a novel framework called Semantics-Preserving Adversarial Embedding Network (SP-AEN) for zero-shot visual recognition (ZSL), where test images and their classes are both unseen during training. SP-AEN aims to tackle the inherent problem --- semantic loss --- in the prevailing family of embedding-based ZSL, where some semantics would be discarded during training if they are non-discriminative for training classes, but could become critical for recognizing test classes. Specifically, SP-AEN prevents the semantic loss by introducing an independent visual-to-semantic space embedder which disentangles the semantic space into two subspaces for the two arguably conflicting objectives: classification and reconstruction. Through adversarial learning of the two subspaces, SP-AEN can transfer the semantics from the reconstructive subspace to the discriminative one, accomplishing the improved zero-shot recognition of unseen classes. Comparing with prior works, SP-AEN can not only improve classification but also generate photo-realistic images, demonstrating the effectiveness of semantic preservation. On four popular benchmarks: CUB, AWA, SUN and aPY, SP-AEN considerably outperforms other state-of-the-art methods by an absolute performance difference of 12.2\%, 9.3\%, 4.0\%, and 3.6\% in terms of harmonic mean value

    LIGHTEN: Learning Interactions with Graph and Hierarchical TEmporal Networks for HOI in videos

    Full text link
    Analyzing the interactions between humans and objects from a video includes identification of the relationships between humans and the objects present in the video. It can be thought of as a specialized version of Visual Relationship Detection, wherein one of the objects must be a human. While traditional methods formulate the problem as inference on a sequence of video segments, we present a hierarchical approach, LIGHTEN, to learn visual features to effectively capture spatio-temporal cues at multiple granularities in a video. Unlike current approaches, LIGHTEN avoids using ground truth data like depth maps or 3D human pose, thus increasing generalization across non-RGBD datasets as well. Furthermore, we achieve the same using only the visual features, instead of the commonly used hand-crafted spatial features. We achieve state-of-the-art results in human-object interaction detection (88.9% and 92.6%) and anticipation tasks of CAD-120 and competitive results on image based HOI detection in V-COCO dataset, setting a new benchmark for visual features based approaches. Code for LIGHTEN is available at https://github.com/praneeth11009/LIGHTEN-Learning-Interactions-with-Graphs-and-Hierarchical-TEmporal-Networks-for-HOIComment: 9 pages, 6 figures, ACM Multimedia Conference 202

    TD^2-Net: Toward Denoising and Debiasing for Dynamic Scene Graph Generation

    Full text link
    Dynamic scene graph generation (SGG) focuses on detecting objects in a video and determining their pairwise relationships. Existing dynamic SGG methods usually suffer from several issues, including 1) Contextual noise, as some frames might contain occluded and blurred objects. 2) Label bias, primarily due to the high imbalance between a few positive relationship samples and numerous negative ones. Additionally, the distribution of relationships exhibits a long-tailed pattern. To address the above problems, in this paper, we introduce a network named TD2^2-Net that aims at denoising and debiasing for dynamic SGG. Specifically, we first propose a denoising spatio-temporal transformer module that enhances object representation with robust contextual information. This is achieved by designing a differentiable Top-K object selector that utilizes the gumbel-softmax sampling strategy to select the relevant neighborhood for each object. Second, we introduce an asymmetrical reweighting loss to relieve the issue of label bias. This loss function integrates asymmetry focusing factors and the volume of samples to adjust the weights assigned to individual samples. Systematic experimental results demonstrate the superiority of our proposed TD2^2-Net over existing state-of-the-art approaches on Action Genome databases. In more detail, TD2^2-Net outperforms the second-best competitors by 12.7 \% on mean-Recall@10 for predicate classification.Comment: Accepted by AAAI 202

    Action Class Relation Detection and Classification Across Multiple Video Datasets

    Full text link
    The Meta Video Dataset (MetaVD) provides annotated relations between action classes in major datasets for human action recognition in videos. Although these annotated relations enable dataset augmentation, it is only applicable to those covered by MetaVD. For an external dataset to enjoy the same benefit, the relations between its action classes and those in MetaVD need to be determined. To address this issue, we consider two new machine learning tasks: action class relation detection and classification. We propose a unified model to predict relations between action classes, using language and visual information associated with classes. Experimental results show that (i) pre-trained recent neural network models for texts and videos contribute to high predictive performance, (ii) the relation prediction based on action label texts is more accurate than based on videos, and (iii) a blending approach that combines predictions by both modalities can further improve the predictive performance in some cases.Comment: Accepted to Pattern Recognition Letters. 12 pages, 4 figure

    Multi-Label Meta Weighting for Long-Tailed Dynamic Scene Graph Generation

    Full text link
    This paper investigates the problem of scene graph generation in videos with the aim of capturing semantic relations between subjects and objects in the form of ⟨\langlesubject, predicate, object⟩\rangle triplets. Recognizing the predicate between subject and object pairs is imbalanced and multi-label in nature, ranging from ubiquitous interactions such as spatial relationships (\eg \emph{in front of}) to rare interactions such as \emph{twisting}. In widely-used benchmarks such as Action Genome and VidOR, the imbalance ratio between the most and least frequent predicates reaches 3,218 and 3,408, respectively, surpassing even benchmarks specifically designed for long-tailed recognition. Due to the long-tailed distributions and label co-occurrences, recent state-of-the-art methods predominantly focus on the most frequently occurring predicate classes, ignoring those in the long tail. In this paper, we analyze the limitations of current approaches for scene graph generation in videos and identify a one-to-one correspondence between predicate frequency and recall performance. To make the step towards unbiased scene graph generation in videos, we introduce a multi-label meta-learning framework to deal with the biased predicate distribution. Our meta-learning framework learns a meta-weight network for each training sample over all possible label losses. We evaluate our approach on the Action Genome and VidOR benchmarks by building upon two current state-of-the-art methods for each benchmark. The experiments demonstrate that the multi-label meta-weight network improves the performance for predicates in the long tail without compromising performance for head classes, resulting in better overall performance and favorable generalizability. Code: \url{https://github.com/shanshuo/ML-MWN}.Comment: ICMR 202

    MRTNet: Multi-Resolution Temporal Network for Video Sentence Grounding

    Full text link
    Given an untrimmed video and natural language query, video sentence grounding aims to localize the target temporal moment in the video. Existing methods mainly tackle this task by matching and aligning semantics of the descriptive sentence and video segments on a single temporal resolution, while neglecting the temporal consistency of video content in different resolutions. In this work, we propose a novel multi-resolution temporal video sentence grounding network: MRTNet, which consists of a multi-modal feature encoder, a Multi-Resolution Temporal (MRT) module, and a predictor module. MRT module is an encoder-decoder network, and output features in the decoder part are in conjunction with Transformers to predict the final start and end timestamps. Particularly, our MRT module is hot-pluggable, which means it can be seamlessly incorporated into any anchor-free models. Besides, we utilize a hybrid loss to supervise cross-modal features in MRT module for more accurate grounding in three scales: frame-level, clip-level and sequence-level. Extensive experiments on three prevalent datasets have shown the effectiveness of MRTNet.Comment: work in progres

    LASER: A Neuro-Symbolic Framework for Learning Spatial-Temporal Scene Graphs with Weak Supervision

    Full text link
    We propose LASER, a neuro-symbolic approach to learn semantic video representations that capture rich spatial and temporal properties in video data by leveraging high-level logic specifications. In particular, we formulate the problem in terms of alignment between raw videos and spatio-temporal logic specifications. The alignment algorithm leverages a differentiable symbolic reasoner and a combination of contrastive, temporal, and semantics losses. It effectively and efficiently trains low-level perception models to extract fine-grained video representation in the form of a spatio-temporal scene graph that conforms to the desired high-level specification. In doing so, we explore a novel methodology that weakly supervises the learning of video semantic representations through logic specifications. We evaluate our method on two datasets with rich spatial and temporal specifications: 20BN-Something-Something and MUGEN. We demonstrate that our method learns better fine-grained video semantics than existing baselines
    corecore