7 research outputs found

    Unsupervised Video Summarization via Attention-Driven Adversarial Learning

    Get PDF
    This paper presents a new video summarization approach that integrates an attention mechanism to identify the signi cant parts of the video, and is trained unsupervisingly via generative adversarial learning. Starting from the SUM-GAN model, we rst develop an improved version of it (called SUM-GAN-sl) that has a signi cantly reduced number of learned parameters, performs incremental training of the model's components, and applies a stepwise label-based strategy for updating the adversarial part. Subsequently, we introduce an attention mechanism to SUM-GAN-sl in two ways: i) by integrating an attention layer within the variational auto-encoder (VAE) of the architecture (SUM-GAN-VAAE), and ii) by replacing the VAE with a deterministic attention auto-encoder (SUM-GAN-AAE). Experimental evaluation on two datasets (SumMe and TVSum) documents the contribution of the attention auto-encoder to faster and more stable training of the model, resulting in a signi cant performance improvement with respect to the original model and demonstrating the competitiveness of the proposed SUM-GAN-AAE against the state of the art

    AC-SUM-GAN: Connecting Actor-Critic and Generative Adversarial Networks for Unsupervised Video Summarization

    Get PDF
    This paper presents a new method for unsupervised video summarization. The proposed architecture embeds an Actor-Critic model into a Generative Adversarial Network and formulates the selection of important video fragments (that will be used to form the summary) as a sequence generation task. The Actor and the Critic take part in a game that incrementally leads to the selection of the video key-fragments, and their choices at each step of the game result in a set of rewards from the Discriminator. The designed training workflow allows the Actor and Critic to discover a space of actions and automatically learn a policy for key-fragment selection. Moreover, the introduced criterion for choosing the best model after the training ends, enables the automatic selection of proper values for parameters of the training process that are not learned from the data (such as the regularization factor σ). Experimental evaluation on two benchmark datasets (SumMe and TVSum) demonstrates that the proposed AC-SUM-GAN model performs consistently well and gives SoA results in comparison to unsupervised methods, that are also competitive with respect to supervised methods

    On Patching Learning Discrepancies in Neural Network Training

    Get PDF
    Neural network\u27s ability to model data patterns proved to be immensely useful in a plethora of practical applications. However, using the physical world\u27s data can be problematic since it is often cluttered, crowded with scattered insignificant patterns, contain unusual compositions, and widely infiltrated with biases and imbalances. Consequently, training a neural network to find meaningful patterns in seas of chaotic data points becomes virtually as hard as finding a needle in a haystack. Specifically, attempting to simulate real-world multi-modal noisy distributions with high precision leads the network to learn an ill-informed inference distribution. In this work, we discuss four techniques to mitigate common discrepancies between real-world representations and the training distribution learned by the network. Namely, we address the techniques of Diverse sampling, objective generalization, domain, and task adaptation being introduced as priors in learning the primary objective. For each of these techniques, we contrast the basic training where no prior is applied to the learning with our proposed method and show the advantage of guiding the training distribution to the critical patterns in real-world data using our suggested approaches. We examine those discrepancy-mitigation techniques on a variety of vision tasks ranging from image generation and retrieval to video summarization and actionness ranking

    Video Summarization Using Unsupervised Deep Learning

    Get PDF
    In this thesis, we address the task of video summarization using unsupervised deep-learning architectures. Video summarization aims to generate a short summary by selecting the most informative and important frames (key-frames) or fragments (key-fragments) of the full-length video, and presenting them in temporally-ordered fashion. Our objective is to overcome observed weaknesses of existing video summarization approaches that utilize RNNs for modeling the temporal dependence of frames, related to: i) the small influence of the estimated frame-level importance scores in the created video summary, ii) the insufficiency of RNNs to model long-range frames' dependence, and iii) the small amount of parallelizable operations during the training of RNNs. To address the first weakness, we propose a new unsupervised network architecture, called AC-SUM-GAN, which formulates the selection of important video fragments as a sequence generation task and learns this task by embedding an Actor-Critic model in a Generative Adversarial Network. The feedback of a trainable Discriminator is used as a reward by the Actor-Critic model in order to explore a space of actions and learn a value function (Critic) and a policy (Actor) for video fragment selection. To tackle the remaining weaknesses, we investigate the use of attention mechanisms for video summarization and propose a new supervised network architecture, called PGL-SUM, that combines global and local multi-head attention mechanisms which take into account the temporal position of the video frames, in order to discover different modelings of the frames' dependencies at different levels of granularity. Based on the acquired experience, we then propose a new unsupervised network architecture, called CA-SUM, which estimates the frames' importance using a novel concentrated attention mechanism that focuses on non-overlapping blocks in the main diagonal of the attention matrix and takes into account the attentive uniqueness and diversity of the associated frames of the video. All the proposed architectures have been extensively evaluated on the most commonly-used benchmark datasets, demonstrating their competitiveness against other approaches and documenting the contribution of our proposals on advancing the current state-of-the-art on video summarization. Finally, we make a first attempt on producing explanations for the video summarization results. Inspired by relevant works in the Natural Language Processing domain, we propose an attention-based method for explainable video summarization and we evaluate the performance of various explanation signals using our CA-SUM architecture and two benchmark datasets for video summarization. The experimental results indicate the advanced performance of explanation signals formed using the inherent attention weights, and demonstrate the ability of the proposed method to explain the video summarization results using clues about the focus of the attention mechanism
    corecore