6,538 research outputs found

    Learning to track for spatio-temporal action localization

    Get PDF
    We propose an effective approach for spatio-temporal action localization in realistic videos. The approach first detects proposals at the frame-level and scores them with a combination of static and motion CNN features. It then tracks high-scoring proposals throughout the video using a tracking-by-detection approach. Our tracker relies simultaneously on instance-level and class-level detectors. The tracks are scored using a spatio-temporal motion histogram, a descriptor at the track level, in combination with the CNN features. Finally, we perform temporal localization of the action using a sliding-window approach at the track level. We present experimental results for spatio-temporal localization on the UCF-Sports, J-HMDB and UCF-101 action localization datasets, where our approach outperforms the state of the art with a margin of 15%, 7% and 12% respectively in mAP

    Real Time Turbulent Video Perfecting by Image Stabilization and Super-Resolution

    Full text link
    Image and video quality in Long Range Observation Systems (LOROS) suffer from atmospheric turbulence that causes small neighbourhoods in image frames to chaotically move in different directions and substantially hampers visual analysis of such image and video sequences. The paper presents a real-time algorithm for perfecting turbulence degraded videos by means of stabilization and resolution enhancement. The latter is achieved by exploiting the turbulent motion. The algorithm involves generation of a reference frame and estimation, for each incoming video frame, of a local image displacement map with respect to the reference frame; segmentation of the displacement map into two classes: stationary and moving objects and resolution enhancement of stationary objects, while preserving real motion. Experiments with synthetic and real-life sequences have shown that the enhanced videos, generated in real time, exhibit substantially better resolution and complete stabilization for stationary objects while retaining real motion.Comment: Submitted to The Seventh IASTED International Conference on Visualization, Imaging, and Image Processing (VIIP 2007) August, 2007 Palma de Mallorca, Spai

    Instability onset and scaling laws of an autooscillating turbulent flow in a complex plasma

    Get PDF
    We study a complex plasma under microgravity conditions that is first stabilized with an oscillating electric field. Once the stabilization is stopped, the so-called heartbeat instability develops. We study how the kinetic energy spectrum changes during and after the onset of the instability and compare with the double cascade predicted by Kraichnan and Leith for two-dimensional turbulence. The onset of the instability manifests clearly in the ratio of the reduced rates of cascade of energy and enstrophy and in the power-law exponents of the energy spectra.Comment: 7 pages, 7 figure
    • …
    corecore