9,428 research outputs found
Do You See What I Mean? Visual Resolution of Linguistic Ambiguities
Understanding language goes hand in hand with the ability to integrate
complex contextual information obtained via perception. In this work, we
present a novel task for grounded language understanding: disambiguating a
sentence given a visual scene which depicts one of the possible interpretations
of that sentence. To this end, we introduce a new multimodal corpus containing
ambiguous sentences, representing a wide range of syntactic, semantic and
discourse ambiguities, coupled with videos that visualize the different
interpretations for each sentence. We address this task by extending a vision
model which determines if a sentence is depicted by a video. We demonstrate how
such a model can be adjusted to recognize different interpretations of the same
underlying sentence, allowing to disambiguate sentences in a unified fashion
across the different ambiguity types.Comment: EMNLP 201
Detection of major ASL sign types in continuous signing for ASL recognition
In American Sign Language (ASL) as well as other signed languages, different classes of signs (e.g., lexical signs, fingerspelled signs, and classifier constructions) have different internal structural properties. Continuous sign recognition accuracy can be improved through use of distinct recognition strategies, as well as different training datasets, for each class of signs. For these strategies to be applied, continuous signing video needs to be segmented into parts corresponding to particular classes of signs. In this paper we present a multiple instance learning-based segmentation system that accurately labels 91.27% of the video frames of 500 continuous utterances (including 7 different subjects) from the publicly accessible NCSLGR corpus  (Neidle and Vogler, 2012). The system uses novel feature descriptors derived from both motion and shape statistics of the regions of high local motion. The system does not require a hand tracker
An affect-based video retrieval system with open vocabulary querying
Content-based video retrieval systems (CBVR) are creating
new search and browse capabilities using metadata describing significant features of the data. An often overlooked aspect of human interpretation of multimedia data is the affective dimension. Incorporating affective information into multimedia metadata can potentially enable search using
this alternative interpretation of multimedia content. Recent work has described methods to automatically assign affective labels to multimedia data using various approaches. However, the subjective and imprecise nature of affective labels makes it difficult to bridge the semantic gap between system-detected labels and user expression of information requirements in multimedia retrieval. We present a novel affect-based video retrieval system incorporating an open-vocabulary query stage based on WordNet enabling search using an unrestricted query vocabulary. The system performs automatic annotation of video data with labels of well
defined affective terms. In retrieval annotated documents are ranked using the standard Okapi retrieval model based on open-vocabulary text queries. We present experimental results examining the behaviour of the system for retrieval of a collection of automatically annotated feature films of different genres. Our results indicate that affective annotation can potentially provide useful augmentation to more traditional objective content description in multimedia retrieval
Measuring concept similarities in multimedia ontologies: analysis and evaluations
The recent development of large-scale multimedia concept ontologies has provided a new momentum for research in the semantic analysis of multimedia repositories. Different methods for generic concept detection have been extensively studied, but the question of how to exploit the structure of a multimedia ontology and existing inter-concept relations has not received similar attention. In this paper, we present a clustering-based method for modeling semantic concepts on low-level feature spaces and study the evaluation of the quality of such models with entropy-based methods. We cover a variety of methods for assessing the similarity of different concepts in a multimedia ontology. We study three ontologies and apply the proposed techniques in experiments involving the visual and semantic similarities, manual annotation of video, and concept detection. The results show that modeling inter-concept relations can provide a promising resource for many different application areas in semantic multimedia processing
Zero-Shot Hashing via Transferring Supervised Knowledge
Hashing has shown its efficiency and effectiveness in facilitating
large-scale multimedia applications. Supervised knowledge e.g. semantic labels
or pair-wise relationship) associated to data is capable of significantly
improving the quality of hash codes and hash functions. However, confronted
with the rapid growth of newly-emerging concepts and multimedia data on the
Web, existing supervised hashing approaches may easily suffer from the scarcity
and validity of supervised information due to the expensive cost of manual
labelling. In this paper, we propose a novel hashing scheme, termed
\emph{zero-shot hashing} (ZSH), which compresses images of "unseen" categories
to binary codes with hash functions learned from limited training data of
"seen" categories. Specifically, we project independent data labels i.e.
0/1-form label vectors) into semantic embedding space, where semantic
relationships among all the labels can be precisely characterized and thus seen
supervised knowledge can be transferred to unseen classes. Moreover, in order
to cope with the semantic shift problem, we rotate the embedded space to more
suitably align the embedded semantics with the low-level visual feature space,
thereby alleviating the influence of semantic gap. In the meantime, to exert
positive effects on learning high-quality hash functions, we further propose to
preserve local structural property and discrete nature in binary codes.
Besides, we develop an efficient alternating algorithm to solve the ZSH model.
Extensive experiments conducted on various real-life datasets show the superior
zero-shot image retrieval performance of ZSH as compared to several
state-of-the-art hashing methods.Comment: 11 page
- …
