318 research outputs found

    UV Exposed Optical Fibers with Frequency Domain Reflectometry for Device Tracking in Intra-Arterial Procedures

    Full text link
    Shape tracking of medical devices using strain sensing properties in optical fibers has seen increased attention in recent years. In this paper, we propose a novel guidance system for intra-arterial procedures using a distributed strain sensing device based on optical frequency domain reflectometry (OFDR) to track the shape of a catheter. Tracking enhancement is provided by exposing a fiber triplet to a focused ultraviolet beam, producing high scattering properties. Contrary to typical quasi-distributed strain sensors, we propose a truly distributed strain sensing approach, which allows to reconstruct a fiber triplet in real-time. A 3D roadmap of the hepatic anatomy integrated with a 4D MR imaging sequence allows to navigate the catheter within the pre-interventional anatomy, and map the blood flow velocities in the arterial tree. We employed Riemannian anisotropic heat kernels to map the sensed data to the pre-interventional model. Experiments in synthetic phantoms and an in vivo model are presented. Results show that the tracking accuracy is suitable for interventional tracking applications, with a mean 3D shape reconstruction errors of 1.6 +/- 0.3 mm. This study demonstrates the promising potential of MR-compatible UV-exposed OFDR optical fibers for non-ionizing device guidance in intra-arterial procedures

    Context-aware learning for robot-assisted endovascular catheterization

    Get PDF
    Endovascular intervention has become a mainstream treatment of cardiovascular diseases. However, multiple challenges remain such as unwanted radiation exposures, limited two-dimensional image guidance, insufficient force perception and haptic cues. Fast evolving robot-assisted platforms improve the stability and accuracy of instrument manipulation. The master-slave system also removes radiation to the operator. However, the integration of robotic systems into the current surgical workflow is still debatable since repetitive, easy tasks have little value to be executed by the robotic teleoperation. Current systems offer very low autonomy, potential autonomous features could bring more benefits such as reduced cognitive workloads and human error, safer and more consistent instrument manipulation, ability to incorporate various medical imaging and sensing modalities. This research proposes frameworks for automated catheterisation with different machine learning-based algorithms, includes Learning-from-Demonstration, Reinforcement Learning, and Imitation Learning. Those frameworks focused on integrating context for tasks in the process of skill learning, hence achieving better adaptation to different situations and safer tool-tissue interactions. Furthermore, the autonomous feature was applied to next-generation, MR-safe robotic catheterisation platform. The results provide important insights into improving catheter navigation in the form of autonomous task planning, self-optimization with clinical relevant factors, and motivate the design of intelligent, intuitive, and collaborative robots under non-ionizing image modalities.Open Acces

    Computer- and robot-assisted Medical Intervention

    Full text link
    Medical robotics includes assistive devices used by the physician in order to make his/her diagnostic or therapeutic practices easier and more efficient. This chapter focuses on such systems. It introduces the general field of Computer-Assisted Medical Interventions, its aims, its different components and describes the place of robots in that context. The evolutions in terms of general design and control paradigms in the development of medical robots are presented and issues specific to that application domain are discussed. A view of existing systems, on-going developments and future trends is given. A case-study is detailed. Other types of robotic help in the medical environment (such as for assisting a handicapped person, for rehabilitation of a patient or for replacement of some damaged/suppressed limbs or organs) are out of the scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00

    Autonomous Catheterization with Open-source Simulator and Expert Trajectory

    Full text link
    Endovascular robots have been actively developed in both academia and industry. However, progress toward autonomous catheterization is often hampered by the widespread use of closed-source simulators and physical phantoms. Additionally, the acquisition of large-scale datasets for training machine learning algorithms with endovascular robots is usually infeasible due to expensive medical procedures. In this chapter, we introduce CathSim, the first open-source simulator for endovascular intervention to address these limitations. CathSim emphasizes real-time performance to enable rapid development and testing of learning algorithms. We validate CathSim against the real robot and show that our simulator can successfully mimic the behavior of the real robot. Based on CathSim, we develop a multimodal expert navigation network and demonstrate its effectiveness in downstream endovascular navigation tasks. The intensive experimental results suggest that CathSim has the potential to significantly accelerate research in the autonomous catheterization field. Our project is publicly available at https://github.com/airvlab/cathsim.Comment: Code: https://github.com/airvlab/cathsi

    Modeling and Control of Steerable Ablation Catheters

    Get PDF
    Catheters are long, flexible tubes that are extensively used in vascular and cardiac interventions, e.g., cardiac ablation, coronary angiography and mitral valve annuloplasty. Catheter-based cardiac ablation is a well-accepted treatment for atrial fibrillation, a common type of cardiac arrhythmia. During this procedure, a steerable ablation catheter is guided through the vasculature to the left atrium to correct the signal pathways inside the heart and restore normal heart rhythm. The outcome of the ablation procedure depends mainly on the correct positioning of the catheter tip at the target location inside the heart and also on maintaining a consistent contact between the catheter tip and cardiac tissue. In the presence of cardiac and respiratory motions, achieving these goals during the ablation procedure is very challenging without proper 3D visualization, dexterous control of the flexible catheter and an estimate of the catheter tip/tissue contact force. This research project provides the required basis for developing a robotics-assisted catheter manipulation system with contact force control for use in cardiac ablation procedures. The behavior of the catheter is studied in free space as well in contact with the environment to develop mathematical models of the catheter tip that are well suited for developing control systems. The validity of the proposed modeling approaches and the performance of the suggested control techniques are evaluated experimentally. As the first step, the static force-deflection relationship for ablation catheters is described with a large-deflection beam model and an optimized pseudo-rigid-body 3R model. The proposed static model is then used in developing a control system for controlling the contact force when the catheter tip is interacting with a static environment. Our studies also showed that it is possible to estimate the tip/tissue contact force by analyzing the shape of the catheter without installing a force sensor on the catheter. During cardiac ablation, the catheter tip is in contact with a relatively fast moving environment (cardiac tissue). Robotic manipulation of the catheter has the potential to improve the quality of contact between the catheter tip and cardiac tissue. To this end, the frequency response of the catheter is investigated and a control technique is proposed to compensate for the cardiac motion and to maintain a constant tip/tissue contact force. Our study on developing a motion compensated robotics-assisted catheter manipulation system suggests that redesigning the actuation mechanism of current ablation catheters would provide a major improvement in using these catheters in robotics-assisted cardiac ablation procedures

    Robot-assistive minimally invasive surgery:trends and future directions

    Get PDF
    The evolution of medical technologies—such as surgical devices and imaging techniques—has transformed all aspects of surgery. A key area of development is robot-assisted minimally invasive surgery (MIS). This review paper provides an overview of the evolution of robotic MIS, from its infancy to our days, and envisioned future challenges. It provides an outlook of breakthrough surgical robotic platforms, their clinical applications, and their evolution over the years. It discusses how the integration of robotic, imaging, and sensing technologies has contributed to create novel surgical platforms that can provide the surgeons with enhanced dexterity, precision, and surgical navigation while reducing the invasiveness and efficacy of the intervention. Finally, this review provides an outlook on the future of robotic MIS discussing opportunities and challenges that the scientific community will have to address in the coming decade. We hope that this review serves to provide a quick and accessible way to introduce the readers to this exciting and fast-evolving area of research, and to inspire future research in this field

    Review of photoacoustic imaging plus X

    Full text link
    Photoacoustic imaging (PAI) is a novel modality in biomedical imaging technology that combines the rich optical contrast with the deep penetration of ultrasound. To date, PAI technology has found applications in various biomedical fields. In this review, we present an overview of the emerging research frontiers on PAI plus other advanced technologies, named as PAI plus X, which includes but not limited to PAI plus treatment, PAI plus new circuits design, PAI plus accurate positioning system, PAI plus fast scanning systems, PAI plus novel ultrasound sensors, PAI plus advanced laser sources, PAI plus deep learning, and PAI plus other imaging modalities. We will discuss each technology's current state, technical advantages, and prospects for application, reported mostly in recent three years. Lastly, we discuss and summarize the challenges and potential future work in PAI plus X area
    • …
    corecore