692,521 research outputs found
Center to limb variation of penumbral Stokes V profiles
We investigated the horizontal and the vertical component of the Evershed
flow (EF). To this end, we computed average Stokes V profiles for various
velocity classes in penumbrae at different heliocentric angles. Our results
show that for blueshifted profiles an additional lobe with the same polarity as
the spot is present in the blue side of the average Stokes V profile. The
amplitude of the additional lobe grows with increasing blueshift and with
increasing heliocentric angle. For small redshifts, the profiles show an
additional lobe with the opposite polarity as the spot on the red side of the
average Stokes V profile. Even at disk center, the original polarity of the
average Stokes V profile is reversed for strong redshifts. The transition
between the different types of Stokes V profiles is continuous and indicates
that not only the vertical, but also the horizontal EF is a magnetized stream
of plasma in a magnetic background field
NMR Experiments on a Three-Dimensional Vibrofluidized Granular Medium
A three-dimensional granular system fluidized by vertical container
vibrations was studied using pulsed field gradient (PFG) NMR coupled with
one-dimensional magnetic resonance imaging (MRI). The system consisted of
mustard seeds vibrated vertically at 50 Hz, and the number of layers N_ell <= 4
was sufficiently low to achieve a nearly time-independent granular fluid. Using
NMR, the vertical profiles of density and granular temperature were directly
measured, along with the distributions of vertical and horizontal grain
velocities. The velocity distributions showed modest deviations from
Maxwell-Boltzmann statistics, except for the vertical velocity distribution
near the sample bottom which was highly skewed and non-Gaussian. Data taken for
three values of N_ell and two dimensionless accelerations Gamma=15,18 were fit
to a hydrodynamic theory, which successfully models the density and temperature
profiles including a temperature inversion near the free upper surface.Comment: 14 pages, 15 figure
Diagnostics of the tropical tropopause layer from in-situ observations and CCM data
A suite of diagnostics is applied to in-situ aircraft measurements and one Chemistry-Climate Model (CCM) data to characterize the vertical structure of the Tropical Tropopause Layer (TTL). The diagnostics are based on vertical tracer profiles and relative vertical tracer gradients, using tropopause-referenced coordinates, and tracer-tracer relationships in the tropical Upper Troposphere/Lower Stratosphere (UT/LS).
Observations were obtained during four tropical campaigns performed from 1999 to 2006 with the research aircraft Geophysica and have been compared to the output of the ECHAM5/MESSy CCM. The model vertical resolution in the TTL (~500 m) allows for appropriate comparison with high-resolution aircraft observations and the diagnostics used highlight common TTL features between the model and the observational data.
The analysis of the vertical profiles of water vapour, ozone, and nitrous oxide, in both the observations and the model, shows that concentration mixing ratios exhibit a strong gradient change across the tropical tropopause, due to the role of this latter as a transport barrier and that transition between the tropospheric and stratospheric regimes occurs within a finite layer. The use of relative vertical ozone and carbon monoxide gradients, in addition to the vertical profiles, helps to highlight the region where this transition occurs and allows to give an estimate of its thickness. The analysis of the CO-O3 and H2O-O3 scatter plots and of the Probability Distribution Function (PDF) of the H2O-O3 pair completes this picture as it allows to better distinguish tropospheric and stratospheric regimes that can be identified by their different chemical composition.
The joint analysis and comparison of observed and modelled data allows to state that the model can represent the background TTL structure and its seasonal variability rather accurately. The model estimate of the thickness of the interface region between tropospheric and stratospheric regimes agrees well with average values inferred from observations. On the other hand, the measurements can be influenced by regional scale variability, local transport processes as well as deep convection, that can not be captured by the model
Hydrodynamic and solid residence time distribution in a circulating fluidized bed: experimental and 3D computational study
Vertical profiles of local pressure, horizontal profiles of net vertical solid mass flux, and residence time distributions (RTD) of the solid phase are experimentally assessed in the riser of a small scale cold Circulating Fluidized Bed of 9 m high having a square cross section of 1111 cm. Air (density 1.2 kg/m3, dynamic viscosity 1.8×10-5 Pa.s) and typical FCC particles (density 1400 kg/m3, mean diameter 70 mm) are used. The superficial gas velocity is kept constant at 7 m/s while the solid mass flux ranges from 46 to 133 kg/m2/s. The axial dispersion of the solid phase is found to decrease when increasing the solid mass flux. Simultaneously, 3D transient CFD simulations are performed to conclude on the usability of the eulerian-eulerian approach for the prediction of the solid phase mixing in the riser. The numerical investigation of the solid mixing is deferred until later since the near-wall region where the solid phase downflow and mixing are predominant is not well predicted in spite of well-predicted vertical profiles of pressure
Studies of vertical wind profiles at Cape Kennedy, Florida Final report
Vertical wind profiles spectral analysis and numerical wind forecasts at Cape Kenned
Mathematical wind profiles
Augmented Fourier polynomials for mathematical representation of vertical profiles for horizontal wind velocitie
Particle-size characteristics of the vertical dust profiles of two contrasting dust events in the Channel Country of western Queensland, Australia
Spatial and temporal variations in vegetation and soil surface conditions of rangelands add a level of complexity to wind erosion processes which is often difficult to model or measure. Butler and colleagues have developed a methodology which combines computer simulation and experimental measurement to analyse how spatial and temporal changes in dust source area emission rates and atmospheric conditions affect vertical dust concentration profiles during wind erosion events in the Queensland Channel Country. This methodology has not, however, taken into account how variations in dust source area particle-size can affect vertical dust concentration profiles.
The present paper examines how the particle-size characteristics of dust source soils affect both vertical dust concentration profiles and the vertical distribution of particle-sizes in two contrasting wind erosion events in the Queensland Channel Country. Comparisons are made between computer simulations of these events and the results of field measurements (of vertical dust concentration profiles) and laboratory measurements (of dust particle-size). Computer simulations of the particle-size emissions from the different dust source areas during the two events produce vertical distributions of dust particle-sizes which are similar to the measured dust particle-sizes for these events. These results indicate that erodibility-induced spatial and temporal variations in particle-size emissions of dust source areas have important influences upon: dust fluxes, vertical dust concentration profiles and the vertical distribution of dust particle-sizes within these profile
- …
