2,841 research outputs found

    Disjoint induced subgraphs of the same order and size

    Full text link
    For a graph GG, let f(G)f(G) be the largest integer kk for which there exist two vertex-disjoint induced subgraphs of GG each on kk vertices, both inducing the same number of edges. We prove that f(G)≥n/2−o(n)f(G) \ge n/2 - o(n) for every graph GG on nn vertices. This answers a question of Caro and Yuster.Comment: 25 pages, improved presentation, fixed misprints, European Journal of Combinatoric

    Polynomial-time perfect matchings in dense hypergraphs

    Get PDF
    Let HH be a kk-graph on nn vertices, with minimum codegree at least n/k+cnn/k + cn for some fixed c>0c > 0. In this paper we construct a polynomial-time algorithm which finds either a perfect matching in HH or a certificate that none exists. This essentially solves a problem of Karpi\'nski, Ruci\'nski and Szyma\'nska; Szyma\'nska previously showed that this problem is NP-hard for a minimum codegree of n/k−cnn/k - cn. Our algorithm relies on a theoretical result of independent interest, in which we characterise any such hypergraph with no perfect matching using a family of lattice-based constructions.Comment: 64 pages. Update includes minor revisions. To appear in Advances in Mathematic

    Exact Clustering of Weighted Graphs via Semidefinite Programming

    Full text link
    As a model problem for clustering, we consider the densest k-disjoint-clique problem of partitioning a weighted complete graph into k disjoint subgraphs such that the sum of the densities of these subgraphs is maximized. We establish that such subgraphs can be recovered from the solution of a particular semidefinite relaxation with high probability if the input graph is sampled from a distribution of clusterable graphs. Specifically, the semidefinite relaxation is exact if the graph consists of k large disjoint subgraphs, corresponding to clusters, with weight concentrated within these subgraphs, plus a moderate number of outliers. Further, we establish that if noise is weakly obscuring these clusters, i.e, the between-cluster edges are assigned very small weights, then we can recover significantly smaller clusters. For example, we show that in approximately sparse graphs, where the between-cluster weights tend to zero as the size n of the graph tends to infinity, we can recover clusters of size polylogarithmic in n. Empirical evidence from numerical simulations is also provided to support these theoretical phase transitions to perfect recovery of the cluster structure

    Estimating parameters of a multipartite loglinear graph model via the EM algorithm

    Full text link
    We will amalgamate the Rash model (for rectangular binary tables) and the newly introduced α\alpha-β\beta models (for random undirected graphs) in the framework of a semiparametric probabilistic graph model. Our purpose is to give a partition of the vertices of an observed graph so that the generated subgraphs and bipartite graphs obey these models, where their strongly connected parameters give multiscale evaluation of the vertices at the same time. In this way, a heterogeneous version of the stochastic block model is built via mixtures of loglinear models and the parameters are estimated with a special EM iteration. In the context of social networks, the clusters can be identified with social groups and the parameters with attitudes of people of one group towards people of the other, which attitudes depend on the cluster memberships. The algorithm is applied to randomly generated and real-word data
    • …
    corecore