19,886 research outputs found

    Separating path systems

    Full text link
    We study separating systems of the edges of a graph where each member of the separating system is a path. We conjecture that every nn-vertex graph admits a separating path system of size O(n)O(n) and prove this in certain interesting special cases. In particular, we establish this conjecture for random graphs and graphs with linear minimum degree. We also obtain tight bounds on the size of a minimal separating path system in the case of trees.Comment: 21 pages, fixed misprints, Journal of Combinatoric

    Strong Connectivity in Directed Graphs under Failures, with Application

    Full text link
    In this paper, we investigate some basic connectivity problems in directed graphs (digraphs). Let GG be a digraph with mm edges and nn vertices, and let GeG\setminus e be the digraph obtained after deleting edge ee from GG. As a first result, we show how to compute in O(m+n)O(m+n) worst-case time: (i)(i) The total number of strongly connected components in GeG\setminus e, for all edges ee in GG. (ii)(ii) The size of the largest and of the smallest strongly connected components in GeG\setminus e, for all edges ee in GG. Let GG be strongly connected. We say that edge ee separates two vertices xx and yy, if xx and yy are no longer strongly connected in GeG\setminus e. As a second set of results, we show how to build in O(m+n)O(m+n) time O(n)O(n)-space data structures that can answer in optimal time the following basic connectivity queries on digraphs: (i)(i) Report in O(n)O(n) worst-case time all the strongly connected components of GeG\setminus e, for a query edge ee. (ii)(ii) Test whether an edge separates two query vertices in O(1)O(1) worst-case time. (iii)(iii) Report all edges that separate two query vertices in optimal worst-case time, i.e., in time O(k)O(k), where kk is the number of separating edges. (For k=0k=0, the time is O(1)O(1)). All of the above results extend to vertex failures. All our bounds are tight and are obtained with a common algorithmic framework, based on a novel compact representation of the decompositions induced by the 11-connectivity (i.e., 11-edge and 11-vertex) cuts in digraphs, which might be of independent interest. With the help of our data structures we can design efficient algorithms for several other connectivity problems on digraphs and we can also obtain in linear time a strongly connected spanning subgraph of GG with O(n)O(n) edges that maintains the 11-connectivity cuts of GG and the decompositions induced by those cuts.Comment: An extended abstract of this work appeared in the SODA 201

    Rectangular Layouts and Contact Graphs

    Get PDF
    Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct O(n2)O(n^2)-area rectangular layouts for general contact graphs and O(nlogn)O(n\log n)-area rectangular layouts for trees. (For trees, this is an O(logn)O(\log n)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require Ω(n2)\Omega(n^2) (rsp., Ω(nlogn)\Omega(n\log n)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.Comment: 28 pages, 13 figures, 55 references, 1 appendi

    Smale flows on S2×S1\mathbb{S}^2\times\mathbb{S}^1

    Full text link
    In this paper, we use abstract Lyapunov graphs as a combinatorial tool to obtain a complete classification of Smale flows on S2×S1\mathbb{S}^2\times\mathbb{S}^1. This classification gives necessary and sufficient conditions that must be satisfied by an abstract Lyapunov graph in order for it to be associated to a Smale flow on S2×S1\mathbb{S}^2\times\mathbb{S}^1
    corecore