28,741 research outputs found

    Separating path systems

    Full text link
    We study separating systems of the edges of a graph where each member of the separating system is a path. We conjecture that every nn-vertex graph admits a separating path system of size O(n)O(n) and prove this in certain interesting special cases. In particular, we establish this conjecture for random graphs and graphs with linear minimum degree. We also obtain tight bounds on the size of a minimal separating path system in the case of trees.Comment: 21 pages, fixed misprints, Journal of Combinatoric

    p-adic path set fractals and arithmetic

    Full text link
    This paper considers a class C(Z_p) of closed sets of the p-adic integers obtained by graph-directed constructions analogous to those of Mauldin and Williams over the real numbers. These sets are characterized as collections of those p-adic integers whose p-adic expansions are describeed by paths in the graph of a finite automaton issuing from a distinguished initial vertex. This paper shows that this class of sets is closed under the arithmetic operations of addition and multiplication by p-integral rational numbers. In addition the Minkowski sum (under p-adic addition) of two set in the class is shown to also belong to this class. These results represent purely p-adic phenomena in that analogous closure properties do not hold over the real numbers. We also show the existence of computable formulas for the Hausdorff dimensions of such sets.Comment: v1 24 pages; v2 added to title, 28 pages; v3, 30 pages, added concluding section, v.4, incorporate changes requested by reviewe

    Downwash-Aware Trajectory Planning for Large Quadrotor Teams

    Full text link
    We describe a method for formation-change trajectory planning for large quadrotor teams in obstacle-rich environments. Our method decomposes the planning problem into two stages: a discrete planner operating on a graph representation of the workspace, and a continuous refinement that converts the non-smooth graph plan into a set of C^k-continuous trajectories, locally optimizing an integral-squared-derivative cost. We account for the downwash effect, allowing safe flight in dense formations. We demonstrate the computational efficiency in simulation with up to 200 robots and the physical plausibility with an experiment with 32 nano-quadrotors. Our approach can compute safe and smooth trajectories for hundreds of quadrotors in dense environments with obstacles in a few minutes.Comment: 8 page

    Rectangular Layouts and Contact Graphs

    Get PDF
    Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct O(n2)O(n^2)-area rectangular layouts for general contact graphs and O(nlogn)O(n\log n)-area rectangular layouts for trees. (For trees, this is an O(logn)O(\log n)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require Ω(n2)\Omega(n^2) (rsp., Ω(nlogn)\Omega(n\log n)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.Comment: 28 pages, 13 figures, 55 references, 1 appendi

    Strong Connectivity in Directed Graphs under Failures, with Application

    Full text link
    In this paper, we investigate some basic connectivity problems in directed graphs (digraphs). Let GG be a digraph with mm edges and nn vertices, and let GeG\setminus e be the digraph obtained after deleting edge ee from GG. As a first result, we show how to compute in O(m+n)O(m+n) worst-case time: (i)(i) The total number of strongly connected components in GeG\setminus e, for all edges ee in GG. (ii)(ii) The size of the largest and of the smallest strongly connected components in GeG\setminus e, for all edges ee in GG. Let GG be strongly connected. We say that edge ee separates two vertices xx and yy, if xx and yy are no longer strongly connected in GeG\setminus e. As a second set of results, we show how to build in O(m+n)O(m+n) time O(n)O(n)-space data structures that can answer in optimal time the following basic connectivity queries on digraphs: (i)(i) Report in O(n)O(n) worst-case time all the strongly connected components of GeG\setminus e, for a query edge ee. (ii)(ii) Test whether an edge separates two query vertices in O(1)O(1) worst-case time. (iii)(iii) Report all edges that separate two query vertices in optimal worst-case time, i.e., in time O(k)O(k), where kk is the number of separating edges. (For k=0k=0, the time is O(1)O(1)). All of the above results extend to vertex failures. All our bounds are tight and are obtained with a common algorithmic framework, based on a novel compact representation of the decompositions induced by the 11-connectivity (i.e., 11-edge and 11-vertex) cuts in digraphs, which might be of independent interest. With the help of our data structures we can design efficient algorithms for several other connectivity problems on digraphs and we can also obtain in linear time a strongly connected spanning subgraph of GG with O(n)O(n) edges that maintains the 11-connectivity cuts of GG and the decompositions induced by those cuts.Comment: An extended abstract of this work appeared in the SODA 201

    The virtual cohomology dimension of Teichm\"uller modular groups: the first results and a road not taken

    Full text link
    The paper is devoted to a detailed exposition of results outlined in author's 1983 note "On the virtual cohomology dimension of the Teichm\"uller modular group". The paper includes the full proofs and a discussion of the context which motivated both the results and the methods used. The reminiscences included into the last section are an integral part of this discussion. A key idea is to use the simply-connectedness of the Hatcher-Thurston complex. This idea was hardly developed further, but still keeps a promise.Comment: 30 pages, 7 figure
    corecore