632 research outputs found

    A connection between circular colorings and periodic schedules

    Get PDF
    AbstractWe show that there is a curious connection between circular colorings of edge-weighted digraphs and periodic schedules of timed marked graphs. Circular coloring of an edge-weighted digraph was introduced by Mohar [B. Mohar, Circular colorings of edge-weighted graphs, J. Graph Theory 43 (2003) 107–116]. This kind of coloring is a very natural generalization of several well-known graph coloring problems including the usual circular coloring [X. Zhu, Circular chromatic number: A survey, Discrete Math. 229 (2001) 371–410] and the circular coloring of vertex-weighted graphs [W. Deuber, X. Zhu, Circular coloring of weighted graphs, J. Graph Theory 23 (1996) 365–376]. Timed marked graphs Gβ†’ [R.M. Karp, R.E. Miller, Properties of a model for parallel computations: Determinancy, termination, queuing, SIAM J. Appl. Math. 14 (1966) 1390–1411] are used, in computer science, to model the data movement in parallel computations, where a vertex represents a task, an arc uv with weight cuv represents a data channel with communication cost, and tokens on arc uv represent the input data of task vertex v. Dynamically, if vertex u operates at time t, then u removes one token from each of its in-arc; if uv is an out-arc of u, then at time t+cuv vertex u places one token on arc uv. Computer scientists are interested in designing, for each vertex u, a sequence of time instants {fu(1),fu(2),fu(3),…} such that vertex u starts its kth operation at time fu(k) and each in-arc of u contains at least one token at that time. The set of functions {fu:u∈V(Gβ†’)} is called a schedule of Gβ†’. Computer scientists are particularly interested in periodic schedules. Given a timed marked graph Gβ†’, they ask if there exist a period p>0 and real numbers xu such that Gβ†’ has a periodic schedule of the form fu(k)=xu+p(kβˆ’1) for each vertex u and any positive integer k. In this note we demonstrate an unexpected connection between circular colorings and periodic schedules. The aim of this note is to provide a possibility of translating problems and methods from one area of graph coloring to another area of computer science

    Quantum Hall Ground States, Binary Invariants, and Regular Graphs

    Full text link
    Extracting meaningful physical information out of a many-body wavefunction is often impractical. The polynomial nature of fractional quantum Hall (FQH) wavefunctions, however, provides a rare opportunity for a study by virtue of ground states alone. In this article, we investigate the general properties of FQH ground state polynomials. It turns out that the data carried by an FQH ground state can be essentially that of a (small) directed graph/matrix. We establish a correspondence between FQH ground states, binary invariants and regular graphs and briefly introduce all the necessary concepts. Utilizing methods from invariant theory and graph theory, we will then take a fresh look on physical properties of interest, e.g. squeezing properties, clustering properties, etc. Our methodology allows us to `unify' almost all of the previously constructed FQH ground states in the literature as special cases of a graph-based class of model FQH ground states, which we call \emph{accordion} model FQH states

    Positivity for Gaussian graphical models

    Full text link
    Gaussian graphical models are parametric statistical models for jointly normal random variables whose dependence structure is determined by a graph. In previous work, we introduced trek separation, which gives a necessary and sufficient condition in terms of the graph for when a subdeterminant is zero for all covariance matrices that belong to the Gaussian graphical model. Here we extend this result to give explicit cancellation-free formulas for the expansions of nonzero subdeterminants.Comment: 16 pages, 3 figure
    • …
    corecore