7 research outputs found

    Vertex adjacencies in the set covering polyhedron

    Full text link
    We describe the adjacency of vertices of the (unbounded version of the) set covering polyhedron, in a similar way to the description given by Chvatal for the stable set polytope. We find a sufficient condition for adjacency, and characterize it with similar conditions in the case where the underlying matrix is row circular. We apply our findings to show a new infinite family of minimally nonideal matrices.Comment: Minor revision, 22 pages, 3 figure

    On vertex adjacencies in the polytope of pyramidal tours with step-backs

    Full text link
    We consider the traveling salesperson problem in a directed graph. The pyramidal tours with step-backs are a special class of Hamiltonian cycles for which the traveling salesperson problem is solved by dynamic programming in polynomial time. The polytope of pyramidal tours with step-backs PSB(n)PSB (n) is defined as the convex hull of the characteristic vectors of all possible pyramidal tours with step-backs in a complete directed graph. The skeleton of PSB(n)PSB (n) is the graph whose vertex set is the vertex set of PSB(n)PSB (n) and the edge set is the set of geometric edges or one-dimensional faces of PSB(n)PSB (n). The main result of the paper is a necessary and sufficient condition for vertex adjacencies in the skeleton of the polytope PSB(n)PSB (n) that can be verified in polynomial time.Comment: in Englis

    Backtracking algorithms for constructing the Hamiltonian decomposition of a 4-regular multigraph

    Full text link
    We consider a Hamiltonian decomposition problem of partitioning a regular multigraph into edge-disjoint Hamiltonian cycles. It is known that verifying vertex nonadjacency in the 1-skeleton of the symmetric and asymmetric traveling salesperson polytopes is an NP-complete problem. On the other hand, a sufficient condition for two vertices to be nonadjacent can be formulated as a combinatorial problem of finding a Hamiltonian decomposition of a 4-regular multigraph. We present two backtracking algorithms for verifying vertex nonadjacency in the 1-skeleton of the traveling salesperson polytope and constructing a Hamiltonian decomposition: an algorithm based on a simple path extension and an algorithm based on the chain edge fixing procedure. According to the results of computational experiments for undirected multigraphs, both backtracking algorithms lost to the known general variable neighborhood search algorithm. However, for directed multigraphs, the algorithm based on chain edge fixing showed comparable results with heuristics on instances with the existing solution and better results on instances of the problem where the Hamiltonian decomposition does not exist.Comment: In Russian. Computational experiments are revise

    Алгоритмы поиска с возвратом для построения гамильтонова разложения 4-регулярного мультиграфа

    Get PDF
    We consider a Hamiltonian decomposition problem of partitioning a regular graph into edge-disjoint Hamiltonian cycles. It is known that verifying vertex non-adjacency in the 1-skeleton of the symmetric and asymmetric traveling salesperson polytopes is an NP-complete problem. On the other hand, a suffcient condition for two vertices to be non-adjacent can be formulated as a combinatorial problem of finding a Hamiltonian decomposition of a 4-regular multigraph. We present two backtracking algorithms for verifying vertex non-adjacency in the 1-skeleton of the traveling salesperson polytope and constructing a Hamiltonian decomposition: an algorithm based on a simple path extension and an algorithm based on the chain edge fixing procedure. Based on the results of the computational experiments for undirected multigraphs, both backtracking algorithms lost to the known heuristic general variable neighborhood search algorithm. However, for directed multigraphs, the algorithm based on chain fixing of edges showed comparable results with heuristics on instances with existing solutions, and better results on instances of the problem where the Hamiltonian decomposition does not exist.Рассматривается задача построения гамильтонова разложения регулярного мультиграфа на гамильтоновы циклы без общих рёбер. Известно, что проверка несмежности вершин в полиэдральных графах симметричного и асимметричного многогранников коммивояжёра является NP-полной задачей. С другой стороны, достаточное условие несмежности вершин можно сформулировать в виде комбинаторной задачи построения гамильтонова разложения 4-регулярного мультиграфа. В статье представлены два алгоритма поиска с возвратом для проверки несмежности вершин в полиэдральном графе коммивояжёра и построения гамильтонова разложения 4-регулярного мультиграфа: алгоритм на основе последовательного расширения простого пути и алгоритм на основе процедуры цепного фиксирования рёбер. По результатам вычислительных экспериментов для неориентированных мультиграфов оба переборных алгоритма проиграли известному эвристическому алгоритму поиска с переменными окрестностями. Однако для ориентированных мультиграфов алгоритм на основе цепного фиксирования рёбер показал сопоставимые результаты с эвристиками на экземплярах задачи, имеющих решение, и лучшие результаты на экземплярах задачи, для которых гамильтонова разложения не существует

    Addendum to “Vertex adjacencies in the set covering polyhedron” [Discrete Appl. Math. 218 (2017) 40–56]

    No full text
    We study the relationship between the vertices of an up-monotone polyhedron R and those of the polytope P obtained by truncating R with the unit hypercube. When R has binary vertices, we characterize the vertices of P in terms of the vertices of R, show their integrality, and prove that the 1-skeleton of R is an induced subgraph of the 1-skeleton of P. We conclude by applying our findings to settle a claim in the original paper.Fil: Aguilera, Néstor Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Katz, Ricardo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Tolomei, Paola Beatriz. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentin
    corecore