650 research outputs found

    Vertex colouring and forbidden subgraphs - a survey

    Get PDF
    There is a great variety of colouring concepts and results in the literature. Here our focus is to survey results on vertex colourings of graphs defined in terms of forbidden induced subgraph conditions

    Ramsey properties of randomly perturbed graphs: cliques and cycles

    Full text link
    Given graphs H1,H2H_1,H_2, a graph GG is (H1,H2)(H_1,H_2)-Ramsey if for every colouring of the edges of GG with red and blue, there is a red copy of H1H_1 or a blue copy of H2H_2. In this paper we investigate Ramsey questions in the setting of randomly perturbed graphs: this is a random graph model introduced by Bohman, Frieze and Martin in which one starts with a dense graph and then adds a given number of random edges to it. The study of Ramsey properties of randomly perturbed graphs was initiated by Krivelevich, Sudakov and Tetali in 2006; they determined how many random edges must be added to a dense graph to ensure the resulting graph is with high probability (K3,Kt)(K_3,K_t)-Ramsey (for t3t\ge 3). They also raised the question of generalising this result to pairs of graphs other than (K3,Kt)(K_3,K_t). We make significant progress on this question, giving a precise solution in the case when H1=KsH_1=K_s and H2=KtH_2=K_t where s,t5s,t \ge 5. Although we again show that one requires polynomially fewer edges than in the purely random graph, our result shows that the problem in this case is quite different to the (K3,Kt)(K_3,K_t)-Ramsey question. Moreover, we give bounds for the corresponding (K4,Kt)(K_4,K_t)-Ramsey question; together with a construction of Powierski this resolves the (K4,K4)(K_4,K_4)-Ramsey problem. We also give a precise solution to the analogous question in the case when both H1=CsH_1=C_s and H2=CtH_2=C_t are cycles. Additionally we consider the corresponding multicolour problem. Our final result gives another generalisation of the Krivelevich, Sudakov and Tetali result. Specifically, we determine how many random edges must be added to a dense graph to ensure the resulting graph is with high probability (Cs,Kt)(C_s,K_t)-Ramsey (for odd s5s\ge 5 and t4t\ge 4).Comment: 24 pages + 12-page appendix; v2: cited independent work of Emil Powierski, stated results for cliques in graphs of low positive density separately (Theorem 1.6) for clarity; v3: author accepted manuscript, to appear in CP

    Minimum Cost Homomorphisms to Reflexive Digraphs

    Full text link
    For digraphs GG and HH, a homomorphism of GG to HH is a mapping $f:\ V(G)\dom V(H)suchthat such that uv\in A(G)implies implies f(u)f(v)\in A(H).Ifmoreovereachvertex. If moreover each vertex u \in V(G)isassociatedwithcosts is associated with costs c_i(u), i \in V(H),thenthecostofahomomorphism, then the cost of a homomorphism fis is \sum_{u\in V(G)}c_{f(u)}(u).Foreachfixeddigraph. For each fixed digraph H, the {\em minimum cost homomorphism problem} for H,denotedMinHOM(, denoted MinHOM(H),isthefollowingproblem.Givenaninputdigraph), is the following problem. Given an input digraph G,togetherwithcosts, together with costs c_i(u),, u\in V(G),, i\in V(H),andaninteger, and an integer k,decideif, decide if Gadmitsahomomorphismto admits a homomorphism to Hofcostnotexceeding of cost not exceeding k. We focus on the minimum cost homomorphism problem for {\em reflexive} digraphs H(everyvertexof (every vertex of Hhasaloop).ItisknownthattheproblemMinHOM( has a loop). It is known that the problem MinHOM(H)ispolynomialtimesolvableifthedigraph) is polynomial time solvable if the digraph H has a {\em Min-Max ordering}, i.e., if its vertices can be linearly ordered by <sothat so that i<j, s<rand and ir, js \in A(H)implythat imply that is \in A(H)and and jr \in A(H).WegiveaforbiddeninducedsubgraphcharacterizationofreflexivedigraphswithaMinMaxordering;ourcharacterizationimpliesapolynomialtimetestfortheexistenceofaMinMaxordering.Usingthischaracterization,weshowthatforareflexivedigraph. We give a forbidden induced subgraph characterization of reflexive digraphs with a Min-Max ordering; our characterization implies a polynomial time test for the existence of a Min-Max ordering. Using this characterization, we show that for a reflexive digraph H$ which does not admit a Min-Max ordering, the minimum cost homomorphism problem is NP-complete. Thus we obtain a full dichotomy classification of the complexity of minimum cost homomorphism problems for reflexive digraphs
    corecore