1,231 research outputs found

    Good Applications for Crummy Entity Linkers? The Case of Corpus Selection in Digital Humanities

    Get PDF
    Over the last decade we have made great progress in entity linking (EL) systems, but performance may vary depending on the context and, arguably, there are even principled limitations preventing a "perfect" EL system. This also suggests that there may be applications for which current "imperfect" EL is already very useful, and makes finding the "right" application as important as building the "right" EL system. We investigate the Digital Humanities use case, where scholars spend a considerable amount of time selecting relevant source texts. We developed WideNet; a semantically-enhanced search tool which leverages the strengths of (imperfect) EL without getting in the way of its expert users. We evaluate this tool in two historical case-studies aiming to collect a set of references to historical periods in parliamentary debates from the last two decades; the first targeted the Dutch Golden Age, and the second World War II. The case-studies conclude with a critical reflection on the utility of WideNet for this kind of research, after which we outline how such a real-world application can help to improve EL technology in general.Comment: Accepted for presentation at SEMANTiCS '1

    Exploiting Semantics for Filtering and Searching Knowledge in a Software Development Context

    Get PDF
    Software development is still considered a bottleneck for SMEs (Small and Medium Enterprises) in the advance of the Information Society. Usually, SMEs store and collect a large number of software textual documentation; these documents might be profitably used to facilitate them in using (and re-using) Software Engineering methods for systematically designing their applications, thus reducing software development cost. Specific and semantics textual filtering/search mechanisms, supporting the identification of adequate processes and practices for the enterprise needs, are fundamental in this context. To this aim, we present an automatic document retrieval method based on semantic similarity and Word Sense Disambiguation (WSD) techniques. The proposal leverages on the strengths of both classic information retrieval and knowledge-based techniques, exploiting syntactical and semantic information provided by general and specific domain knowledge sources. For any SME, it is as easily and generally applicable as are the search techniques offered by common enterprise Content Management Systems (CMSs). Our method was developed within the FACIT-SME European FP-7 project, whose aim is to facilitate the diffusion of Software Engineering methods and best practices among SMEs. As shown by a detailed experimental evaluation, the achieved effectiveness goes well beyond typical retrieval solutions

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Information extraction from multimedia web documents: an open-source platform and testbed

    No full text
    The LivingKnowledge project aimed to enhance the current state of the art in search, retrieval and knowledge management on the web by advancing the use of sentiment and opinion analysis within multimedia applications. To achieve this aim, a diverse set of novel and complementary analysis techniques have been integrated into a single, but extensible software platform on which such applications can be built. The platform combines state-of-the-art techniques for extracting facts, opinions and sentiment from multimedia documents, and unlike earlier platforms, it exploits both visual and textual techniques to support multimedia information retrieval. Foreseeing the usefulness of this software in the wider community, the platform has been made generally available as an open-source project. This paper describes the platform design, gives an overview of the analysis algorithms integrated into the system and describes two applications that utilise the system for multimedia information retrieval

    Information retrieval and text mining technologies for chemistry

    Get PDF
    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European Community’s Horizon 2020 Program (project reference: 654021 - OpenMinted). M.K. additionally acknowledges the Encomienda MINETAD-CNIO as part of the Plan for the Advancement of Language Technology. O.R. and J.O. thank the Foundation for Applied Medical Research (FIMA), University of Navarra (Pamplona, Spain). This work was partially funded by Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi for useful feedback and discussions during the preparation of the manuscript.info:eu-repo/semantics/publishedVersio
    corecore