148 research outputs found

    A suffix tree or not a suffix tree?

    Get PDF
    In this paper we study the structure of suffix trees. Given an unlabeled tree τ on n nodes and suffix links of its internal nodes, we ask the question ”Is τ a suffix tree?”, i.e., is there a string S whose suffix tree has the same topological structure as τ? We place no restrictions on S, in particular we do not require that S ends with a unique symbol. This corresponds to considering the more general definition of implicit or extended suffix trees. Such general suffix trees have many applications and are for example needed to allow efficient updates when suffix trees are built online. Deciding if τ is a suffix tree is not an easy task, because, with no restrictions on the final symbol, we cannot guess the length of a string that realizes τ from the number of leaves. And without an upper bound on the length of such a string, it is not even clear how to solve the problem by an exhaustive search. In this paper, we prove that τ is a suffix tree if and only if it is realized by a string S of length n−1, and we give a linear-time algorithm for inferring S when the first letter on each edge is known. This generalizes the work of I et al. [Discrete Appl. Math. 163, 2014]

    On the Limits and Practice of Automatically Designing Self-Stabilization

    Get PDF
    A protocol is said to be self-stabilizing when the distributed system executing it is guaranteed to recover from any fault that does not cause permanent damage. Designing such protocols is hard since they must recover from all possible states, therefore we investigate how feasible it is to synthesize them automatically. We show that synthesizing stabilization on a fixed topology is NP-complete in the number of system states. When a solution is found, we further show that verifying its correctness on a general topology (with any number of processes) is undecidable, even for very simple unidirectional rings. Despite these negative results, we develop an algorithm to synthesize a self-stabilizing protocol given its desired topology, legitimate states, and behavior. By analogy to shadow puppetry, where a puppeteer may design a complex puppet to cast a desired shadow, a protocol may need to be designed in a complex way that does not even resemble its specification. Our shadow/puppet synthesis algorithm addresses this concern and, using a complete backtracking search, has automatically designed 4 new self-stabilizing protocols with minimal process space requirements: 2-state maximal matching on bidirectional rings, 5-state token passing on unidirectional rings, 3-state token passing on bidirectional chains, and 4-state orientation on daisy chains

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    ML + FV = ♡\heartsuit? A Survey on the Application of Machine Learning to Formal Verification

    Get PDF
    Formal Verification (FV) and Machine Learning (ML) can seem incompatible due to their opposite mathematical foundations and their use in real-life problems: FV mostly relies on discrete mathematics and aims at ensuring correctness; ML often relies on probabilistic models and consists of learning patterns from training data. In this paper, we postulate that they are complementary in practice, and explore how ML helps FV in its classical approaches: static analysis, model-checking, theorem-proving, and SAT solving. We draw a landscape of the current practice and catalog some of the most prominent uses of ML inside FV tools, thus offering a new perspective on FV techniques that can help researchers and practitioners to better locate the possible synergies. We discuss lessons learned from our work, point to possible improvements and offer visions for the future of the domain in the light of the science of software and systems modeling.Comment: 13 pages, no figures, 3 table

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    • 

    corecore