2 research outputs found

    CARET analysis of multithreaded programs

    Full text link
    Dynamic Pushdown Networks (DPNs) are a natural model for multithreaded programs with (recursive) procedure calls and thread creation. On the other hand, CARET is a temporal logic that allows to write linear temporal formulas while taking into account the matching between calls and returns. We consider in this paper the model-checking problem of DPNs against CARET formulas. We show that this problem can be effectively solved by a reduction to the emptiness problem of B\"uchi Dynamic Pushdown Systems. We then show that CARET model checking is also decidable for DPNs communicating with locks. Our results can, in particular, be used for the detection of concurrent malware.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Model checking Branching-Time Properties of Multi-Pushdown Systems is Hard

    Full text link
    We address the model checking problem for shared memory concurrent programs modeled as multi-pushdown systems. We consider here boolean programs with a finite number of threads and recursive procedures. It is well-known that the model checking problem is undecidable for this class of programs. In this paper, we investigate the decidability and the complexity of this problem under the assumption of bounded context-switching defined by Qadeer and Rehof, and of phase-boundedness proposed by La Torre et al. On the model checking of such systems against temporal logics and in particular branching time logics such as the modal μ\mu-calculus or CTL has received little attention. It is known that parity games, which are closely related to the modal μ\mu-calculus, are decidable for the class of bounded-phase systems (and hence for bounded-context switching as well), but with non-elementary complexity (Seth). A natural question is whether this high complexity is inevitable and what are the ways to get around it. This paper addresses these questions and unfortunately, and somewhat surprisingly, it shows that branching model checking for MPDSs is inherently an hard problem with no easy solution. We show that parity games on MPDS under phase-bounding restriction is non-elementary. Our main result shows that model checking a kk context bounded MPDS against a simple fragment of CTL, consisting of formulas that whose temporal operators come from the set {\EF, \EX}, has a non-elementary lower bound
    corecore