17 research outputs found

    Fully computable a posteriori error bounds for eigenfunctions

    Full text link
    Fully computable a posteriori error estimates for eigenfunctions of compact self-adjoint operators in Hilbert spaces are derived. The problem of ill-conditioning of eigenfunctions in case of tight clusters and multiple eigenvalues is solved by estimating the directed distance between the spaces of exact and approximate eigenfunctions. Derived upper bounds apply to various types of eigenvalue problems, e.g. to the (generalized) matrix, Laplace, and Steklov eigenvalue problems. These bounds are suitable for arbitrary conforming approximations of eigenfunctions, and they are fully computable in terms of approximate eigenfunctions and two-sided bounds of eigenvalues. Numerical examples illustrate the efficiency of the derived error bounds for eigenfunctions.Comment: 27 pages, 8 tables, 9 figure

    Guaranteed Lower Eigenvalue Bound of Steklov Operator with Conforming Finite Element Methods

    Full text link
    For the eigenvalue problem of the Steklov differential operator, by following Liu's approach, an algorithm utilizing the conforming finite element method (FEM) is proposed to provide guaranteed lower bounds for the eigenvalues. The proposed method requires the a priori error estimation for FEM solution to nonhomogeneous Neumann problems, which is solved by constructing the hypercircle for the corresponding FEM spaces and boundary conditions. Numerical examples are also shown to confirm the efficiency of our proposed method.Comment: 21 pages, 4 figures, 4 table
    corecore