1,907 research outputs found

    Towards Physical Hybrid Systems

    Full text link
    Some hybrid systems models are unsafe for mathematically correct but physically unrealistic reasons. For example, mathematical models can classify a system as being unsafe on a set that is too small to have physical importance. In particular, differences in measure zero sets in models of cyber-physical systems (CPS) have significant mathematical impact on the mathematical safety of these models even though differences on measure zero sets have no tangible physical effect in a real system. We develop the concept of "physical hybrid systems" (PHS) to help reunite mathematical models with physical reality. We modify a hybrid systems logic (differential temporal dynamic logic) by adding a first-class operator to elide distinctions on measure zero sets of time within CPS models. This approach facilitates modeling since it admits the verification of a wider class of models, including some physically realistic models that would otherwise be classified as mathematically unsafe. We also develop a proof calculus to help with the verification of PHS.Comment: CADE 201

    An Axiomatic Approach to Liveness for Differential Equations

    Full text link
    This paper presents an approach for deductive liveness verification for ordinary differential equations (ODEs) with differential dynamic logic. Numerous subtleties complicate the generalization of well-known discrete liveness verification techniques, such as loop variants, to the continuous setting. For example, ODE solutions may blow up in finite time or their progress towards the goal may converge to zero. Our approach handles these subtleties by successively refining ODE liveness properties using ODE invariance properties which have a well-understood deductive proof theory. This approach is widely applicable: we survey several liveness arguments in the literature and derive them all as special instances of our axiomatic refinement approach. We also correct several soundness errors in the surveyed arguments, which further highlights the subtlety of ODE liveness reasoning and the utility of our deductive approach. The library of common refinement steps identified through our approach enables both the sound development and justification of new ODE liveness proof rules from our axioms.Comment: FM 2019: 23rd International Symposium on Formal Methods, Porto, Portugal, October 9-11, 201
    corecore