30,665 research outputs found

    Invariant Synthesis for Incomplete Verification Engines

    Full text link
    We propose a framework for synthesizing inductive invariants for incomplete verification engines, which soundly reduce logical problems in undecidable theories to decidable theories. Our framework is based on the counter-example guided inductive synthesis principle (CEGIS) and allows verification engines to communicate non-provability information to guide invariant synthesis. We show precisely how the verification engine can compute such non-provability information and how to build effective learning algorithms when invariants are expressed as Boolean combinations of a fixed set of predicates. Moreover, we evaluate our framework in two verification settings, one in which verification engines need to handle quantified formulas and one in which verification engines have to reason about heap properties expressed in an expressive but undecidable separation logic. Our experiments show that our invariant synthesis framework based on non-provability information can both effectively synthesize inductive invariants and adequately strengthen contracts across a large suite of programs

    Finding polynomial loop invariants for probabilistic programs

    Full text link
    Quantitative loop invariants are an essential element in the verification of probabilistic programs. Recently, multivariate Lagrange interpolation has been applied to synthesizing polynomial invariants. In this paper, we propose an alternative approach. First, we fix a polynomial template as a candidate of a loop invariant. Using Stengle's Positivstellensatz and a transformation to a sum-of-squares problem, we find sufficient conditions on the coefficients. Then, we solve a semidefinite programming feasibility problem to synthesize the loop invariants. If the semidefinite program is unfeasible, we backtrack after increasing the degree of the template. Our approach is semi-complete in the sense that it will always lead us to a feasible solution if one exists and numerical errors are small. Experimental results show the efficiency of our approach.Comment: accompanies an ATVA 2017 submissio

    Incremental Cardinality Constraints for MaxSAT

    Full text link
    Maximum Satisfiability (MaxSAT) is an optimization variant of the Boolean Satisfiability (SAT) problem. In general, MaxSAT algorithms perform a succession of SAT solver calls to reach an optimum solution making extensive use of cardinality constraints. Many of these algorithms are non-incremental in nature, i.e. at each iteration the formula is rebuilt and no knowledge is reused from one iteration to another. In this paper, we exploit the knowledge acquired across iterations using novel schemes to use cardinality constraints in an incremental fashion. We integrate these schemes with several MaxSAT algorithms. Our experimental results show a significant performance boost for these algo- rithms as compared to their non-incremental counterparts. These results suggest that incremental cardinality constraints could be beneficial for other constraint solving domains.Comment: 18 pages, 4 figures, 1 table. Final version published in Principles and Practice of Constraint Programming (CP) 201

    Enhancing Predicate Pairing with Abstraction for Relational Verification

    Full text link
    Relational verification is a technique that aims at proving properties that relate two different program fragments, or two different program runs. It has been shown that constrained Horn clauses (CHCs) can effectively be used for relational verification by applying a CHC transformation, called predicate pairing, which allows the CHC solver to infer relations among arguments of different predicates. In this paper we study how the effects of the predicate pairing transformation can be enhanced by using various abstract domains based on linear arithmetic (i.e., the domain of convex polyhedra and some of its subdomains) during the transformation. After presenting an algorithm for predicate pairing with abstraction, we report on the experiments we have performed on over a hundred relational verification problems by using various abstract domains. The experiments have been performed by using the VeriMAP transformation and verification system, together with the Parma Polyhedra Library (PPL) and the Z3 solver for CHCs.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Spatial Interpolants

    Full text link
    We propose Splinter, a new technique for proving properties of heap-manipulating programs that marries (1) a new separation logic-based analysis for heap reasoning with (2) an interpolation-based technique for refining heap-shape invariants with data invariants. Splinter is property directed, precise, and produces counterexample traces when a property does not hold. Using the novel notion of spatial interpolants modulo theories, Splinter can infer complex invariants over general recursive predicates, e.g., of the form all elements in a linked list are even or a binary tree is sorted. Furthermore, we treat interpolation as a black box, which gives us the freedom to encode data manipulation in any suitable theory for a given program (e.g., bit vectors, arrays, or linear arithmetic), so that our technique immediately benefits from any future advances in SMT solving and interpolation.Comment: Short version published in ESOP 201

    Speeding up the constraint-based method in difference logic

    Get PDF
    "The final publication is available at http://link.springer.com/chapter/10.1007%2F978-3-319-40970-2_18"Over the years the constraint-based method has been successfully applied to a wide range of problems in program analysis, from invariant generation to termination and non-termination proving. Quite often the semantics of the program under study as well as the properties to be generated belong to difference logic, i.e., the fragment of linear arithmetic where atoms are inequalities of the form u v = k. However, so far constraint-based techniques have not exploited this fact: in general, Farkas’ Lemma is used to produce the constraints over template unknowns, which leads to non-linear SMT problems. Based on classical results of graph theory, in this paper we propose new encodings for generating these constraints when program semantics and templates belong to difference logic. Thanks to this approach, instead of a heavyweight non-linear arithmetic solver, a much cheaper SMT solver for difference logic or linear integer arithmetic can be employed for solving the resulting constraints. We present encouraging experimental results that show the high impact of the proposed techniques on the performance of the VeryMax verification systemPeer ReviewedPostprint (author's final draft

    The Maximal Positively Invariant Set: Polynomial Setting

    Get PDF
    This note considers the maximal positively invariant set for polynomial discrete time dynamics subject to constraints specified by a basic semialgebraic set. The note utilizes a relatively direct, but apparently overlooked, fact stating that the related preimage map preserves basic semialgebraic structure. In fact, this property propagates to underlying set--dynamics induced by the associated restricted preimage map in general and to its maximal trajectory in particular. The finite time convergence of the corresponding maximal trajectory to the maximal positively invariant set is verified under reasonably mild conditions. The analysis is complemented with a discussion of computational aspects and a prototype implementation based on existing toolboxes for polynomial optimization
    • …
    corecore