370 research outputs found

    Verb Argument Structure Alternations in Word and Sentence Embeddings

    Get PDF
    Verbs occur in different syntactic environments, or frames. We investigate whether artificial neural networks encode grammatical distinctions necessary for inferring the idiosyncratic frame-selectional properties of verbs. We introduce five datasets, collectively called FAVA, containing in aggregate nearly 10k sentences labeled for grammatical acceptability, illustrating different verbal argument structure alternations. We then test whether models can distinguish acceptable English verb--frame combinations from unacceptable ones using a sentence embedding alone. For converging evidence, we further construct LAVA, a corresponding word-level dataset, and investigate whether the same syntactic features can be extracted from word embeddings. Our models perform reliable classifications for some verbal alternations but not others, suggesting that while these representations do encode fine-grained lexical information, it is incomplete or can be hard to extract. Further, differences between the word- and sentence-level models show that some information present in word embeddings is not passed on to the downstream sentence embeddings

    Deriving Verb Predicates By Clustering Verbs with Arguments

    Full text link
    Hand-built verb clusters such as the widely used Levin classes (Levin, 1993) have proved useful, but have limited coverage. Verb classes automatically induced from corpus data such as those from VerbKB (Wijaya, 2016), on the other hand, can give clusters with much larger coverage, and can be adapted to specific corpora such as Twitter. We present a method for clustering the outputs of VerbKB: verbs with their multiple argument types, e.g. "marry(person, person)", "feel(person, emotion)." We make use of a novel low-dimensional embedding of verbs and their arguments to produce high quality clusters in which the same verb can be in different clusters depending on its argument type. The resulting verb clusters do a better job than hand-built clusters of predicting sarcasm, sentiment, and locus of control in tweets

    Investigating Novel Verb Learning in BERT: Selectional Preference Classes and Alternation-Based Syntactic Generalization

    Full text link
    Previous studies investigating the syntactic abilities of deep learning models have not targeted the relationship between the strength of the grammatical generalization and the amount of evidence to which the model is exposed during training. We address this issue by deploying a novel word-learning paradigm to test BERT's few-shot learning capabilities for two aspects of English verbs: alternations and classes of selectional preferences. For the former, we fine-tune BERT on a single frame in a verbal-alternation pair and ask whether the model expects the novel verb to occur in its sister frame. For the latter, we fine-tune BERT on an incomplete selectional network of verbal objects and ask whether it expects unattested but plausible verb/object pairs. We find that BERT makes robust grammatical generalizations after just one or two instances of a novel word in fine-tuning. For the verbal alternation tests, we find that the model displays behavior that is consistent with a transitivity bias: verbs seen few times are expected to take direct objects, but verbs seen with direct objects are not expected to occur intransitively.Comment: Accepted to BlackboxNLP 202

    Cross-Lingual Induction and Transfer of Verb Classes Based on Word Vector Space Specialisation

    Full text link
    Existing approaches to automatic VerbNet-style verb classification are heavily dependent on feature engineering and therefore limited to languages with mature NLP pipelines. In this work, we propose a novel cross-lingual transfer method for inducing VerbNets for multiple languages. To the best of our knowledge, this is the first study which demonstrates how the architectures for learning word embeddings can be applied to this challenging syntactic-semantic task. Our method uses cross-lingual translation pairs to tie each of the six target languages into a bilingual vector space with English, jointly specialising the representations to encode the relational information from English VerbNet. A standard clustering algorithm is then run on top of the VerbNet-specialised representations, using vector dimensions as features for learning verb classes. Our results show that the proposed cross-lingual transfer approach sets new state-of-the-art verb classification performance across all six target languages explored in this work.Comment: EMNLP 2017 (long paper

    Statistical language learning

    Get PDF
    Theoretical arguments based on the "poverty of the stimulus" have denied a priori the possibility that abstract linguistic representations can be learned inductively from exposure to the environment, given that the linguistic input available to the child is both underdetermined and degenerate. I reassess such learnability arguments by exploring a) the type and amount of statistical information implicitly available in the input in the form of distributional and phonological cues; b) psychologically plausible inductive mechanisms for constraining the search space; c) the nature of linguistic representations, algebraic or statistical. To do so I use three methodologies: experimental procedures, linguistic analyses based on large corpora of naturally occurring speech and text, and computational models implemented in computer simulations. In Chapters 1,2, and 5, I argue that long-distance structural dependencies - traditionally hard to explain with simple distributional analyses based on ngram statistics - can indeed be learned associatively provided the amount of intervening material is highly variable or invariant (the Variability effect). In Chapter 3, I show that simple associative mechanisms instantiated in Simple Recurrent Networks can replicate the experimental findings under the same conditions of variability. Chapter 4 presents successes and limits of such results across perceptual modalities (visual vs. auditory) and perceptual presentation (temporal vs. sequential), as well as the impact of long and short training procedures. In Chapter 5, I show that generalisation to abstract categories from stimuli framed in non-adjacent dependencies is also modulated by the Variability effect. In Chapter 6, I show that the putative separation of algebraic and statistical styles of computation based on successful speech segmentation versus unsuccessful generalisation experiments (as published in a recent Science paper) is premature and is the effect of a preference for phonological properties of the input. In chapter 7 computer simulations of learning irregular constructions suggest that it is possible to learn from positive evidence alone, despite Gold's celebrated arguments on the unlearnability of natural languages. Evolutionary simulations in Chapter 8 show that irregularities in natural languages can emerge from full regularity and remain stable across generations of simulated agents. In Chapter 9 I conclude that the brain may endowed with a powerful statistical device for detecting structure, generalising, segmenting speech, and recovering from overgeneralisations. The experimental and computational evidence gathered here suggests that statistical language learning is more powerful than heretofore acknowledged by the current literature
    • …
    corecore