272,200 research outputs found
The June 2012 transit of Venus. Framework for interpretation of observations
Ground based observers have on 5/6th June 2012 the last opportunity of the
century to watch the passage of Venus across the solar disk from Earth. Venus
transits have traditionally provided unique insight into the Venus atmosphere
through the refraction halo that appears at the planet outer terminator near
ingress/egress. Much more recently, Venus transits have attracted renewed
interest because the technique of transits is being successfully applied to the
characterization of extrasolar planet atmospheres. The current work
investigates theoretically the interaction of sunlight and the Venus atmosphere
through the full range of transit phases, as observed from Earth and from a
remote distance. Our model predictions quantify the relevant atmospheric
phenomena, thereby assisting the observers of the event in the interpretation
of measurements and the extrapolation to the exoplanet case. Our approach
relies on the numerical integration of the radiative transfer equation, and
includes refraction, multiple scattering, atmospheric extinction and solar limb
darkening, as well as an up to date description of the Venus atmosphere. We
produce synthetic images of the planet terminator during ingress/egress that
demonstrate the evolving shape, brightness and chromaticity of the halo.
Guidelines are offered for the investigation of the planet upper haze from
vertically-unresolved photometric measurements. In this respect, the comparison
with measurements from the 2004 transit appears encouraging. We also show
integrated lightcurves of the Venus/Sun system at various phases during transit
and calculate the respective Venus-Sun integrated transmission spectra. The
comparison of the model predictions to those for a Venus-like planet free of
haze and clouds (and therefore a closer terrestrial analogue) complements the
discussion and sets the conclusions into a broader perspective.Comment: 14 pages; 14 figures; Submitted on 02/06/2012; A&A, accepted for
publication on 30/08/201
X-Raying the Dark Side of Venus - Scatter from Venus Magnetotail?
This work analyzes the X-ray, EUV and UV emission apparently coming from the
Earth-facing (dark) side of Venus as observed with Hinode/XRT and SDO/AIA
during a transit across the solar disk occurred in 2012. We have measured
significant X-Ray, EUV and UV flux from Venus dark side. As a check we have
also analyzed a Mercury transit across the solar disk, observed with Hinode/XRT
in 2006. We have used the latest version of the Hinode/XRT Point Spread
Function (PSF) to deconvolve Venus and Mercury X-ray images, in order to remove
possible instrumental scattering. Even after deconvolution, the flux from Venus
shadow remains significant while in the case of Mercury it becomes negligible.
Since stray-light contamination affects the XRT Ti-poly filter data from the
Venus transit in 2012, we performed the same analysis with XRT Al-mesh filter
data, which is not affected by the light leak. Even the Al-mesh filter data
show residual flux. We have also found significant EUV (304 A, 193 A, 335 A)
and UV (1700 A) flux in Venus shadow, as measured with SDO/AIA. The EUV
emission from Venus dark side is reduced when appropriate deconvolution methods
are applied; the emission remains significant, however. The light curves of the
average flux of the shadow in the X-ray, EUV, and UV bands appear different as
Venus crosses the solar disk, but in any of them the flux is, at any time,
approximately proportional to the average flux in a ring surrounding Venus, and
therefore proportional to the average flux of the solar regions around Venus
obscuring disk line of sight. The proportionality factor depends on the band.
This phenomenon has no clear origin; we suggest it may be due to scatter
occurring in the very long magnetotail of Venus.Comment: This paper has been accepted in The Astrophysical Journa
About the various contributions in Venus rotation rate and LOD
% context heading (optional) {Thanks to the Venus Express Mission, new data
on the properties of Venus could be obtained in particular concerning its
rotation.} % aims heading (mandatory) {In view of these upcoming results, the
purpose of this paper is to determine and compare the major physical processes
influencing the rotation of Venus, and more particularly the angular rotation
rate.} % methods heading (mandatory) {Applying models already used for the
Earth, the effect of the triaxiality of a rigid Venus on its period of rotation
are computed. Then the variations of Venus rotation caused by the elasticity,
the atmosphere and the core of the planet are evaluated.} % results heading
(mandatory) {Although the largest irregularities of the rotation rate of the
Earth at short time scales are caused by its atmosphere and elastic
deformations, we show that the Venus ones are dominated by the tidal torque
exerted by the Sun on its solid body. Indeed, as Venus has a slow rotation,
these effects have a large amplitude of 2 minutes of time (mn). These
variations of the rotation rate are larger than the one induced by atmospheric
wind variations that can reach 25-50 seconds of time (s), depending on the
simulation used. The variations due to the core effects which vary with its
size between 3 and 20s are smaller. Compared to these effects, the influence of
the elastic deformation cause by the zonal tidal potential is negligible.} %
conclusions heading (optional), leave it empty if necessary {As the variations
of the rotation of Venus reported here are of the order 3mn peak to peak, they
should influence past, present and future observations providing further
constraints on the planet internal structure and atmosphere.}Comment: 12 pages, 10 figures, Accepted in A&
An Overview of the 13:8 Mean Motion Resonance between Venus and Earth
It is known since the seminal study of Laskar (1989) that the inner planetary
system is chaotic with respect to its orbits and even escapes are not
impossible, although in time scales of billions of years. The aim of this
investigation is to locate the orbits of Venus and Earth in phase space,
respectively to see how close their orbits are to chaotic motion which would
lead to unstable orbits for the inner planets on much shorter time scales.
Therefore we did numerical experiments in different dynamical models with
different initial conditions -- on one hand the couple Venus-Earth was set
close to different mean motion resonances (MMR), and on the other hand Venus'
orbital eccentricity (or inclination) was set to values as large as e = 0.36 (i
= 40deg). The couple Venus-Earth is almost exactly in the 13:8 mean motion
resonance. The stronger acting 8:5 MMR inside, and the 5:3 MMR outside the 13:8
resonance are within a small shift in the Earth's semimajor axis (only 1.5
percent). Especially Mercury is strongly affected by relatively small changes
in eccentricity and/or inclination of Venus in these resonances. Even escapes
for the innermost planet are possible which may happen quite rapidly.Comment: 14 pages, 11 figures, submitted to CMD
Venus halo - Photometric evidence for ice in the Venus clouds
Venus halo and photometric evidence for ice in Venus cloud
Rift systems on Venus: An assessment of mechanical and thermal models
The formation and distribution of major tectonic features on Venus are closely linked to the dominant mechanism of lithospheric heat loss. Among the most spectacular and extensive of the major tectonic features on Venus are the Chasmata, deep linear valleys generally interpreted to be the products of lithospheric extension and rifting. Systems of chasmata and related features can be traced along several tectonic zones up to 20,000 km in linear extent. Mechanical and thermal models for terrestrial continental-rifting are applied to the rift systems of Venus. The models are tested against known topographic and tectonic characteristics of Venus chasmata as well as independent information on the physical properties of the Venus crust and lithosphere
Lithospheric and atmospheric interaction on the planet Venus
Lithospheric and atmospheric interaction in the planet Venus are discussed. The following subject areas are covered: (1) manifestation of exogenic processes using photogeological data; (2) the chemical composition and a chemical model of the troposphere of Venus; (3) the mineral composition of surface rock on Venus; and (4) the cycles of volatile components
- …
