64,205 research outputs found

    Lagrangian Time Series Models for Ocean Surface Drifter Trajectories

    Get PDF
    This paper proposes stochastic models for the analysis of ocean surface trajectories obtained from freely-drifting satellite-tracked instruments. The proposed time series models are used to summarise large multivariate datasets and infer important physical parameters of inertial oscillations and other ocean processes. Nonstationary time series methods are employed to account for the spatiotemporal variability of each trajectory. Because the datasets are large, we construct computationally efficient methods through the use of frequency-domain modelling and estimation, with the data expressed as complex-valued time series. We detail how practical issues related to sampling and model misspecification may be addressed using semi-parametric techniques for time series, and we demonstrate the effectiveness of our stochastic models through application to both real-world data and to numerical model output.Comment: 21 pages, 10 figure

    Multi-time delay, multi-point Linear Stochastic Estimation of a cavity shear layer velocity from wall-pressure measurements

    Get PDF
    Multi-time-delay Linear Stochastic Estimation (MTD-LSE) technique is thoroughly described, focusing on its fundamental properties and potentialities. In the multi-time-delay ap- proach, the estimate of the temporal evolution of the velocity at a given location in the flow field is obtained from multiple past samples of the unconditional sources. The technique is applied to estimate the velocity in a cavity shear layer flow, based on wall-pressure measurements from multiple sensor

    Time dilation in dynamic visual display

    Get PDF
    How does the brain estimate time? This old question has led to many biological and psychological models of time perception (R. A. Block, 1989; P. Fraisse, 1963; J. Gibbon, 1977; D. L. I. Zakay, 1989). Because time cannot be directly measured at a given moment, it has been proposed that the brain estimates time based on the number of changes in an event (S. W. Brown, 1995; P. Fraisse, 1963; W. D. Poynter, 1989). Consistent with this idea, dynamic visual stimuli are known to lengthen perceived time (J. F. Brown, 1931; S. Goldstone & W. T. Lhamon, 1974; W. T. Lhamon & S. Goldstone, 1974, C. O. Z. Roelofs & W. P. C. Zeeman, 1951). However, the kind of information that constitutes the basis for time perception remains unresolved. Here, we show that the temporal frequency of a stimulus serves as the “clock” for perceived duration. Other aspects of changes, such as speed or coherence, were found to be inconsequential. Time dilation saturated at a temporal frequency of 4–8 Hz. These results suggest that the clock governing perceived time has its basis at early processing stages. The possible links between models of time perception and neurophysiological functions of early visual areas are discussed

    Optimal local estimates of visual motion in a natural environment

    Full text link
    Many organisms, from flies to humans, use visual signals to estimate their motion through the world. To explore the motion estimation problem, we have constructed a camera/gyroscope system that allows us to sample, at high temporal resolution, the joint distribution of input images and rotational motions during a long walk in the woods. From these data we construct the optimal estimator of velocity based on spatial and temporal derivatives of image intensity in small patches of the visual world. Over the bulk of the naturally occurring dynamic range, the optimal estimator exhibits the same systematic errors seen in neural and behavioral responses, including the confounding of velocity and contrast. These results suggest that apparent errors of sensory processing may reflect an optimal response to the physical signals in the environment

    Errors and uncertainties in microwave link rainfall estimation explored using drop size measurements and high-resolution radar data

    Get PDF
    Microwave links can be used for the estimation of path-averaged rainfall by using either the path-integrated attenuation or the difference in attenuation of two signals with different frequencies and/or polarizations. Link signals have been simulated using measured time series of raindrop size distributions (DSDs) over a period of nearly 2 yr, in combination with wind velocity data and Taylor’s hypothesis. For this purpose, Taylor’s hypothesis has been tested using more than 1.5 yr of high-resolution radar data. In terms of correlation between spatial and temporal profiles of rainfall intensities, the validity of Taylor’s hypothesis quickly decreases with distance. However, in terms of error statistics, the hypothesis is seen to hold up to distances of at least 10 km. Errors and uncertainties (mean bias error and root-mean-square error, respectively) in microwave link rainfall estimates due to spatial DSD variation are at a minimum at frequencies (and frequency combinations) where the power-law relation for the conversion to rainfall intensity is close to linear. Errors generally increase with link length, whereas uncertainties decrease because of the decrease of scatter about the retrieval relations because of averaging of spatially variable DSDs for longer links. The exponent of power-law rainfall retrieval relations can explain a large part of the variation in both bias and uncertainty, which means that the order of magnitude of these error statistics can be predicted from the value of this exponent, regardless of the link length
    corecore