5,055 research outputs found
Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities
Optimization of energy consumption in future intelligent energy networks (or
Smart Grids) will be based on grid-integrated near-real-time communications
between various grid elements in generation, transmission, distribution and
loads. This paper discusses some of the challenges and opportunities of
communications research in the areas of smart grid and smart metering. In
particular, we focus on some of the key communications challenges for realizing
interoperable and future-proof smart grid/metering networks, smart grid
security and privacy, and how some of the existing networking technologies can
be applied to energy management. Finally, we also discuss the coordinated
standardization efforts in Europe to harmonize communications standards and
protocols.Comment: To be published in IEEE Communications Surveys and Tutorial
Smart Grid for the Smart City
Modern cities are embracing cutting-edge technologies to improve the services they offer to the citizens from traffic control to the reduction of greenhouse gases and energy provisioning. In this chapter, we look at the energy sector advocating how Information and Communication Technologies (ICT) and signal processing techniques can be integrated into next generation power grids for an increased effectiveness in terms of: electrical stability, distribution, improved communication security, energy production, and utilization. In particular, we deliberate about the use of these techniques within new demand response paradigms, where communities of prosumers (e.g., households, generating part of their electricity consumption) contribute to the satisfaction of the energy demand through load balancing and peak shaving. Our discussion also covers the use of big data analytics for demand response and serious games as a tool to promote energy-efficient behaviors from end users
Trends in energy supply integration:Heat pumps and refrigeration plants for enabling integration of renewable sources in the energy system
Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks
Future wireless networks have a substantial potential in terms of supporting
a broad range of complex compelling applications both in military and civilian
fields, where the users are able to enjoy high-rate, low-latency, low-cost and
reliable information services. Achieving this ambitious goal requires new radio
techniques for adaptive learning and intelligent decision making because of the
complex heterogeneous nature of the network structures and wireless services.
Machine learning (ML) algorithms have great success in supporting big data
analytics, efficient parameter estimation and interactive decision making.
Hence, in this article, we review the thirty-year history of ML by elaborating
on supervised learning, unsupervised learning, reinforcement learning and deep
learning. Furthermore, we investigate their employment in the compelling
applications of wireless networks, including heterogeneous networks (HetNets),
cognitive radios (CR), Internet of things (IoT), machine to machine networks
(M2M), and so on. This article aims for assisting the readers in clarifying the
motivation and methodology of the various ML algorithms, so as to invoke them
for hitherto unexplored services as well as scenarios of future wireless
networks.Comment: 46 pages, 22 fig
2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018
The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies.
As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency.
In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community.
In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor
Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches
Peer-to-peer (P2P) energy trading has emerged as a next-generation energy
management mechanism for the smart grid that enables each prosumer of the
network to participate in energy trading with one another and the grid. This
poses a significant challenge in terms of modeling the decision-making process
of each participant with conflicting interest and motivating prosumers to
participate in energy trading and to cooperate, if necessary, for achieving
different energy management goals. Therefore, such decision-making process
needs to be built on solid mathematical and signal processing tools that can
ensure an efficient operation of the smart grid. This paper provides an
overview of the use of game theoretic approaches for P2P energy trading as a
feasible and effective means of energy management. As such, we discuss various
games and auction theoretic approaches by following a systematic classification
to provide information on the importance of game theory for smart energy
research. Then, the paper focuses on the P2P energy trading describing its key
features and giving an introduction to an existing P2P testbed. Further, the
paper zooms into the detail of some specific game and auction theoretic models
that have recently been used in P2P energy trading and discusses some important
finding of these schemes.Comment: 38 pages, single column, double spac
- …
