1,742 research outputs found

    Portfolio Decisions with Higher Order Moments

    Get PDF
    In this paper, we address the global optimization of two interesting nonconvex problems in finance. We relax the normality assumption underlying the classical Markowitz mean-variance portfolio optimization model and consider the incorporation of skewness (third moment) and kurtosis (fourth moment). The investor seeks to maximize the expected return and the skewness of the portfolio and minimize its variance and kurtosis, subject to budget and no short selling constraints. In the first model, it is assumed that asset statistics are exact. The second model allows for uncertainty in asset statistics. We consider rival discrete estimates for the mean, variance, skewness and kurtosis of asset returns. A robust optimization framework is adopted to compute the best investment portfolio maximizing return, skewness and minimizing variance, kurtosis, in view of the worst-case asset statistics. In both models, the resulting optimization problems are nonconvex. We introduce a computational procedure for their global optimization.Mean-variance portfolio selection, Robust portfolio selection, Skewness, Kurtosis, Decomposition methods, Polynomial optimization problems

    Partitioning Procedure for Polynomial Optimization: Application to Portfolio Decisions with Higher Order Moments

    Get PDF
    We consider the problem of finding the minimum of a real-valued multivariate polynomial function constrained in a compact set defined by polynomial inequalities and equalities. This problem, called polynomial optimization problem (POP), is generally nonconvex and has been of growing interest to many researchers in recent years. Our goal is to tackle POPs using decomposition. Towards this goal we introduce a partitioning procedure. The problem manipulations are in line with the pattern used in the Benders decomposition [1], namely relaxation preceded by projection. Stengle’s and Putinar’s Positivstellensatz are employed to derive the so-called feasibility and optimality constraints, respectively. We test the performance of the proposed method on a collection of benchmark problems and we present the numerical results. As an application, we consider the problem of selecting an investment portfolio optimizing the mean, variance, skewness and kurtosis of the portfolio.Polynomial optimization, Semidefinite relaxations, Positivstellensatz, Sum of squares, Benders decomposition, Portfolio optimization
    • …
    corecore