2 research outputs found

    Zero duality gap conditions via abstract convexity

    Get PDF
    vital:16776Using tools provided by the theory of abstract convexity, we extend conditions for zero duality gap to the context of non-convex and nonsmooth optimization. Mimicking the classical setting, an abstract convex function is the upper envelope of a family of abstract affine functions (being conventional vertical translations of the abstract linear functions). We establish new conditions for zero duality gap under no topological assumptions on the space of abstract linear functions. In particular, we prove that the zero duality gap property can be fully characterized in terms of an inclusion involving (abstract) (Formula presented.) -subdifferentials. This result is new even for the classical convex setting. Endowing the space of abstract linear functions with the topology of pointwise convergence, we extend several fundamental facts of functional/convex analysis. This includes (i) the classical Banach–Alaoglu–Bourbaki theorem (ii) the subdifferential sum rule, and (iii) a constraint qualification for zero duality gap which extends a fact established by Borwein, Burachik and Yao (2014) for the conventional convex case. As an application, we show with a specific example how our results can be exploited to show zero duality for a family of non-convex, non-differentiable problems. © 2021 Informa UK Limited, trading as Taylor & Francis Group
    corecore