6 research outputs found

    Automated three-dimensional image registration for longitudinal photoacoustic imaging

    Get PDF
    Significance: Photoacoustic tomography (PAT) has great potential in monitoring disease progression and treatment response in breast cancer. However, due to variations in breast repositioning, there is a chance of geometric misalignment between images. Further, poor repositioning can affect light fluence distribution and imaging field-of-view, making images different from one another. The net effect is that it becomes challenging to distinguish between image changes due to repositioning effects and those due to true biological variations. Aim: The aim is to develop a three-dimensional image registration framework for geometrically aligning repeated PAT volumetric images, which are potentially affected by repositioning effects such as misalignment, changed radiant exposure conditions, and different fields-of-view. Approach: The proposed framework involves the use of a coordinate-based neural network to represent the displacement field between pairs of PAT volumetric images. A loss function based on normalized cross correlation and Frangi vesselness feature extraction at multiple scales was implemented. We refer to our image registration framework as MUVINN-reg, which stands for multiscale vesselness-based image registration using neural networks. The approach was tested on a longitudinal dataset of healthy volunteer breast PAT images acquired with the hybrid photoacoustic-ultrasound Photoacoustic Mammoscope 3 imaging system. The registration performance was also tested under unfavorable repositioning conditions such as intentional mispositioning, and variation in breast-supporting cup size between measurements. Results: A total of 13 pairs of repeated PAT scans were included in this study. MUVINN-reg showed excellent performance in co-registering each pair of images. The proposed framework was shown to be robust to image intensity shifts and field-of-view changes. Furthermore, MUVINN-reg could align vessels at imaging depths greater than 4 cm. Conclusions: The proposed framework will enable the use of PAT for quantitative and reproducible monitoring of disease progression and treatment response.</p

    Proceedings of the European Conference on Agricultural Engineering AgEng2021

    Get PDF
    This proceedings book results from the AgEng2021 Agricultural Engineering Conference under auspices of the European Society of Agricultural Engineers, held in an online format based on the University of Évora, Portugal, from 4 to 8 July 2021. This book contains the full papers of a selection of abstracts that were the base for the oral presentations and posters presented at the conference. Presentations were distributed in eleven thematic areas: Artificial Intelligence, data processing and management; Automation, robotics and sensor technology; Circular Economy; Education and Rural development; Energy and bioenergy; Integrated and sustainable Farming systems; New application technologies and mechanisation; Post-harvest technologies; Smart farming / Precision agriculture; Soil, land and water engineering; Sustainable production in Farm buildings

    Evaluation of the ingestive behaviour of the dairy cow under two systems of rotation with slope

    Full text link
    The ingestive behaviour of grazing animals is modulated by the vegetation characteristics, topography and the type of stocking method. This research was carried out in 2019, at the Rumipamba CADER-UCE. It aimed to evaluate the impact of two contrasting stocking methods of dairy cows grazing a pasture with an average of slope >8.5%. Four dairy cows were set to graze a 0.4 ha paddock for 5 days for continuous stocking methods, while for the electric fence methods the dairy cows were restricted to 0.2 ha and the fence was moved uphill every 3 hours, repeating this process four times a day. Cow were equipped with activity sensors for 12 h per day. The whole procedure was repeated 2 times after realizing an equalization cuts and both paddocks, a rest time of 30 days and a random reassignment of paddocks to one of the treatments. The cows showed a difference in terms of the percentage of grazing P=0.0072, being higher with the electric fence (55% of the measurement time). From rising-plate-meter estimates of available biomass along the grazing periods, we calculated despite similar forage allowances (electric fence = 48.06 kg DM/cow/d and continuous = 48.21 DM/cow/d) a higher forage intake was obtained in the electric fence treatment (17.5 kg DM/cow/d) compared the continuous stocking (15.7 kg DM/cow/d) (P=0.006). In terms of milk production animals grazing under the differences electrical fence stocking method tended (P=0.0985) to produce more milk (17.39 kg/d) than those grazing in the continuous system (15.16 kg/d) due to the influence of the slope (P=0.05), while for milk quality the protein content was higher for the electric fence (33.7 g/l) than the continuous method (30.5 g/l) (P=0.039). None of the other milk properties differed between methods (P>0.05)
    corecore