6,875 research outputs found

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    A graphical model based solution to the facial feature point tracking problem

    Get PDF
    In this paper a facial feature point tracker that is motivated by applications such as human-computer interfaces and facial expression analysis systems is proposed. The proposed tracker is based on a graphical model framework. The facial features are tracked through video streams by incorporating statistical relations in time as well as spatial relations between feature points. By exploiting the spatial relationships between feature points, the proposed method provides robustness in real-world conditions such as arbitrary head movements and occlusions. A Gabor feature-based occlusion detector is developed and used to handle occlusions. The performance of the proposed tracker has been evaluated on real video data under various conditions including occluded facial gestures and head movements. It is also compared to two popular methods, one based on Kalman filtering exploiting temporal relations, and the other based on active appearance models (AAM). Improvements provided by the proposed approach are demonstrated through both visual displays and quantitative analysis

    Generalized Network Psychometrics: Combining Network and Latent Variable Models

    Full text link
    We introduce the network model as a formal psychometric model, conceptualizing the covariance between psychometric indicators as resulting from pairwise interactions between observable variables in a network structure. This contrasts with standard psychometric models, in which the covariance between test items arises from the influence of one or more common latent variables. Here, we present two generalizations of the network model that encompass latent variable structures, establishing network modeling as parts of the more general framework of Structural Equation Modeling (SEM). In the first generalization, we model the covariance structure of latent variables as a network. We term this framework Latent Network Modeling (LNM) and show that, with LNM, a unique structure of conditional independence relationships between latent variables can be obtained in an explorative manner. In the second generalization, the residual variance-covariance structure of indicators is modeled as a network. We term this generalization Residual Network Modeling (RNM) and show that, within this framework, identifiable models can be obtained in which local independence is structurally violated. These generalizations allow for a general modeling framework that can be used to fit, and compare, SEM models, network models, and the RNM and LNM generalizations. This methodology has been implemented in the free-to-use software package lvnet, which contains confirmatory model testing as well as two exploratory search algorithms: stepwise search algorithms for low-dimensional datasets and penalized maximum likelihood estimation for larger datasets. We show in simulation studies that these search algorithms performs adequately in identifying the structure of the relevant residual or latent networks. We further demonstrate the utility of these generalizations in an empirical example on a personality inventory dataset.Comment: Published in Psychometrik

    Modeling dependent gene expression

    Full text link
    In this paper we propose a Bayesian approach for inference about dependence of high throughput gene expression. Our goals are to use prior knowledge about pathways to anchor inference about dependence among genes; to account for this dependence while making inferences about differences in mean expression across phenotypes; and to explore differences in the dependence itself across phenotypes. Useful features of the proposed approach are a model-based parsimonious representation of expression as an ordinal outcome, a novel and flexible representation of prior information on the nature of dependencies, and the use of a coherent probability model over both the structure and strength of the dependencies of interest. We evaluate our approach through simulations and in the analysis of data on expression of genes in the Complement and Coagulation Cascade pathway in ovarian cancer.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS525 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore