215,944 research outputs found
Proper efficiency and duality for a new class of nonconvex multitime multiobjective variational problems
In this paper, a new class of generalized of nonconvex multitime multiobjective variational problems is considered. We prove the sufficient optimality conditions for efficiency and proper efficiency in the considered multitime multiobjective variational problems with univex functionals. Further, for such vector variational problems, various duality results in the sense of Mond-Weir and in the sense of Wolfe are established under univexity. The results established in the paper extend and generalize results existing in the literature for such vector variational problems
Variational quantum simulation of general processes
Variational quantum algorithms have been proposed to solve static and dynamic
problems of closed many-body quantum systems. Here we investigate variational
quantum simulation of three general types of tasks---generalised time evolution
with a non-Hermitian Hamiltonian, linear algebra problems, and open quantum
system dynamics. The algorithm for generalised time evolution provides a
unified framework for variational quantum simulation. In particular, we show
its application in solving linear systems of equations and matrix-vector
multiplications by converting these algebraic problems into generalised time
evolution. Meanwhile, assuming a tensor product structure of the matrices, we
also propose another variational approach for these two tasks by combining
variational real and imaginary time evolution. Finally, we introduce
variational quantum simulation for open system dynamics. We variationally
implement the stochastic Schr\"odinger equation, which consists of dissipative
evolution and stochastic jump processes. We numerically test the algorithm with
a six-qubit 2D transverse field Ising model under dissipation.Comment: 18 page
Including Social Nash Equilibria in Abstract Economies
We consider quasi-variational problems (variational problems having constraint sets depending on their own solutions) which appear in concrete economic models such as social and economic networks, financial derivative models, transportation network congestion and traffic equilibrium. First, using an extension of the classical Minty lemma, we show that new upper stability results can be obtained for parametric quasi-variational and linearized quasi-variational problems, while lower stability, which plays a fundamental role in the investigation of hierarchical problems, cannot be achieved in general, even on very restrictive conditions. Then, regularized problems are considered allowing to introduce approximate solutions for the above problems and to investigate their lower and upper stability properties. We stress that the class of quasi-variational problems include social Nash equilibrium problems in abstract economies, so results about approximate Nash equilibria can be easily deduced.quasi-variational, social Nash equilibria, approximate solution, closed map, lower semicontinuous map, upper stability, lower stability
Differential geometry, Palatini gravity and reduction
The present article deals with a formulation of the so called (vacuum)
Palatini gravity as a general variational principle. In order to accomplish
this goal, some geometrical tools related to the geometry of the bundle of
connections of the frame bundle are used. A generalization of
Lagrange-Poincar\'e reduction scheme to these types of variational problems
allows us to relate it with the Einstein-Hilbert variational problem. Relations
with some other variational problems for gravity found in the literature are
discussed.Comment: 28 pages, no figures. (v3) Remarks, discussion and references adde
Airy processes and variational problems
We review the Airy processes; their formulation and how they are conjectured
to govern the large time, large distance spatial fluctuations of one
dimensional random growth models. We also describe formulas which express the
probabilities that they lie below a given curve as Fredholm determinants of
certain boundary value operators, and the several applications of these
formulas to variational problems involving Airy processes that arise in
physical problems, as well as to their local behaviour.Comment: Minor corrections. 41 pages, 4 figures. To appear as chapter in "PASI
Proceedings: Topics in percolative and disordered systems
Homogeneous variational problems: a minicourse
A Finsler geometry may be understood as a homogeneous variational problem,
where the Finsler function is the Lagrangian. The extremals in Finsler geometry
are curves, but in more general variational problems we might consider extremal
submanifolds of dimension . In this minicourse we discuss these problems
from a geometric point of view.Comment: This paper is a written-up version of the major part of a minicourse
given at the sixth Bilateral Workshop on Differential Geometry and its
Applications, held in Ostrava in May 201
- …
